
Artificial Intelligence
CE-417, Group 1

Computer Eng. Department
Sharif University of Technology

Fall 2023

By Mohammad Hossein Rohban, Ph.D.

Courtesy: Most slides are adopted from CSE-573 (Washington U.), original
slides for the textbook, and CS-188 (UC. Berkeley).

1

2

Reinforcement learning

3

Reinforcement Learning

• Still assume a markov decision process (MDP):
• A set of states s Î S
• A set of actions (per state) A
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Still looking for a policy p(s)

• New twist: don’t know T or R
• i.e. We don’t know which states are good or what the actions do
• Must actually try actions and states out to learn

4

Reinforcement Learning

• Still assume a markov decision process (MDP):
• A set of states s Î S
• A set of actions (per state) A
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Still looking for a policy p(s)

• New twist: don’t know T or R
• i.e. We don’t know which states are good or what the actions do
• Must actually try actions and states out to learn

Environm
ent

Agent

Actions: aState: s
Reward: r

6

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Video of Demo Crawler Bot

8

Example: Learning to Talk

9

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

10

Passive Reinforcement Learning

11

Passive Reinforcement Learning

• Simplified task: policy evaluation
• Input: a fixed policy p(s)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• Goal: learn the state values

• In this case:
• Learner is “along for the ride”
• No choice about what actions to take
• Just execute the policy and learn from experience
• This is NOT offline planning! You actually take actions in the world.

12

Model-Based Learning

13

Model-Based Learning

• Model-based idea:
• Learn an approximate model based on experiences
• Solve for values as if the learned model were correct

• Step 1: learn empirical MDP model
• Count outcomes s’ for each s, a
• Normalize to give an estimate of
• Discover each when we experience (s, a, s’)

• Step 2: solve the learned MDP
• For example, use value iteration, as before

14

Example: Model-Based Learning

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

15

Analogy: Expected Age

Goal: Compute expected age of cs188 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

16

Model-Free Learning

17

Direct Evaluation

• Goal: compute values for each state under p

• Idea: average together observed sample values
• Act according to p
• Every time you visit a state, write down what the sum of

discounted rewards turned out to be from that state until
the end of the episode:

• Average those samples

• This is called direct evaluation

18

Example: Direct Evaluation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

V(s) is sum of discounted rewards from s until the end, averaged over all encounters of s

19

Problems with Direct Evaluation

• What’s good about direct evaluation?
• It’s easy to understand
• It doesn’t require any knowledge of T, R
• It eventually computes the correct average values, using just

sample transitions

• What bad about it?
• It wastes information about state connections
• Each state must be learned separately so, it takes a long time

to learn
• Need to have all episodes ahead of time (cannot “stream” in

transitions)

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

20

Why Not Use Policy Evaluation?

• Simplified Bellman updates calculate V for a fixed policy:
• Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections between the states
• Unfortunately, we need T and R to do it!

• Key question: how can we do this update to V without knowing T and R?
• In other words, how to we take a weighted average without knowing the weights?

p(s)

s

s, p(s)

s, p(s),s’
s’

21

Sample-Based Policy Evaluation?

• We want to improve our estimate of V by computing these averages:

• Idea: take samples of outcomes s’ (by doing the action!) and average

p(s)

s

s, p(s)

s1's2' s3'
s, p(s),s’

s'

Almost! But we can’t
rewind time to get sample
after sample from state s.

22

Temporal Difference Learning

• Big idea: learn from every experience!
• Update V(s) each time we experience a transition (s, a, s’, r)
• Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
• Policy still fixed, still doing evaluation!
• Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

23

Exponential Moving Average

• Exponential moving average
• The running interpolation update:

• Makes recent samples more important:

• Forgets about the past (distant past values were wrong anyway)

• Decreasing learning rate (alpha) can give converging averages

24

Example: Temporal Difference Learning

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

TD Learning Happen in the Brain!

25

• Neurons transmit Dopamine to encode reward
or value prediction error

• Example of Neuroscience & AI informing each
other

26

Problems with TD Value Learning

• TD value leaning is a model-free way to do policy evaluation, mimicking bellman
updates with running sample averages

• However, if we want to turn values into a (new) policy, we’re sunk:

• Idea: learn Q-values, not values
• Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

27

Detour: Q-Value Iteration

• Value iteration: find successive (depth-limited) values
• Start with V0(s) = 0, which we know is right
• Given Vk, calculate the depth k+1 values for all states:

• But Q-values are more useful, so compute them instead
• Start with Q0(s,a) = 0, which we know is right
• Given Qk, calculate the depth k+1 Q-values for all Q-states:

28

Q-Learning
• Q-learning: sample-based q-value iteration

• Learn Q(s,a) values as you go
• Receive a sample (s,a,s’,r)

• Consider your old estimate:

• Consider your new sample estimate:

• Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

31

Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy -- even if you’re
acting sub-optimally!

• This is called off-policy learning

• Caveats:
• You have to explore enough
• You have to eventually make the learning rate

small enough
• … but not decrease it too quickly
• Basically, in the limit, it doesn’t matter how you select actions (!)

32

Active Reinforcement Learning

33

Active Reinforcement Learning

• Full reinforcement learning: optimal policies (like value iteration)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• You choose the actions now
• Goal: learn the optimal policy / values

• In this case:
• Learner makes choices!
• Fundamental tradeoff: exploration vs. exploitation
• This is NOT offline planning! You actually take actions in the world and find

out what happens…

39

Exploration vs. Exploitation

40

Video of Demo Q-learning – Manual Exploration –
Bridge Grid

41

How to Explore?

• Several schemes for forcing exploration
• Simplest: random actions (e-greedy)
• Every time step, flip a coin
• With (small) probability e, act randomly
• With (large) probability 1-e, act on current policy

• Problems with random actions?
• You do eventually explore the space, but keep

thrashing around once learning is done
• One solution: lower e over time
• Another solution: exploration functions

42

Video of Demo Q-learning – Epsilon-Greedy – Crawler

43

Exploration Functions

• When to explore?
• Random actions: explore a fixed amount
• Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

• Exploration function
• Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

• Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-update:

Regular Q-update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

44

Video of Demo Q-learning – Exploration Function – Crawler

45

Regret

• Even if you learn the optimal policy, you still
make mistakes along the way!

• Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

• Minimizing regret goes beyond learning to
be optimal – it requires optimally learning
to be optimal

• Example: random exploration and
exploration functions both end up optimal,
but random exploration has higher regret

How Can we Evaluate Exploration Methods?

46

Approximate Q-Learning

47

Generalizing Across States

• Basic Q-learning keeps a table of all Q-values

• In realistic situations, we cannot possibly learn about
every single state!
• Too many states to visit them all in training
• Too many states to hold the q-tables in memory

• Instead, we want to generalize:
• Learn about some small number of training states from

experience
• Generalize that experience to new, similar situations
• This is a fundamental idea in machine learning, and we’ll

see it over and over again

[demo – RL pacman]

48

Example: Pacman

Let’s say we discover
through experience

that this state is bad:

In naïve Q-learning,
we know nothing
about this state:

Or even this one!

49

Video of Demo Q-Learning Pacman – Tiny – Watch All

50

Video of demo Q-learning Pacman – tiny – silent train

51

Video of Demo Q-Learning Pacman – Tricky – Watch All

52

Feature-Based Representations

• Solution: describe a state using a vector of features
(properties) 𝑓!, 𝑓", …
• Features are functions from states to real numbers (often

0/1) that capture important properties of the state
• Example features:

• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist. to dot)2

• Is Pacman in a tunnel? (0/1)
• …… Etc.
• Is it the exact state on this slide?

• Can also describe a q-state (s, a) with features (e.g. Action
moves closer to food)

53

Linear Value Functions

• Using a feature representation, we can write a Q function (or value function) for any
state using a few weights:

• Advantage: our experience is summed up in a few powerful numbers 𝑤!, 𝑤", …
• Disadvantage: states may share features but actually be very different in value!

• Ex: these two states would have the same value if we don’t include ghost positions as a feature:

54

Approximate Q-Learning

• Q-learning with linear q-functions:

• Intuitive interpretation:
• Adjust weights of active features
• e.g., If something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

• Formal justification: online least squares, gradient descent

Exact Q’s

Approximate Q’s

55

Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]

56

Video of Demo Approximate Q-Learning -- Pacman

57

Q-Learning and Least Squares

58

0 200

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression*

Prediction: Prediction:

59

Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation

60

Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

62

Conclusion

• We’re done with part I: search and planning!

• We’ve seen how AI methods can solve
problems in:
• Search
• Constraint satisfaction problems
• Games
• Markov decision problems
• Reinforcement learning

63

Policy Search

64

Policy Search

• Problem: often the feature-based policies that work well (win games,
maximize utilities) aren’t the ones that approximate V / Q best
§ Q-learning’s priority: get Q-values close (modeling)
§ Action selection priority: get ordering of Q-values right (prediction)
§ We’ll see this distinction between modeling and prediction again later in the
course

• Solution: learn policies 𝜋 that maximize rewards, not the Q values that predict them

• Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights

65

Policy Search

• Simplest policy search:
• Start with an initial linear value function or Q-function
• Nudge each feature weight up and down and see if your policy is better than before

• Problems:
• How do we tell the policy got better?
• Need to run many sample episodes!
• If there are a lot of features, this can be impractical

• Better methods exploit lookahead structure, sample wisely, change
multiple parameters…
• Policy Gradient, Proximal Policy Optimization (PPO) are examples

66

Case Studies of Reinforcement Learning!

• Atari game playing

• Robot Locomotion

• Language assistants

67

Case Studies: Atari Game Playing

Case Studies: Atari Game Playing

• MDP:

• State: image of game screen

• 25684*84 possible states

• Processed with hand-designed feature vectors or neural

networks

• Action: combination of arrow keys + button (18)

• Transition T: game code (don’t have access)

• Reward R: game score (don’t have access)

• Very similar to our pacman MDP
• Use approximate Q learning with neural networks and ε-greedy

exploration to solve

[Human-level control through deep reinforcement
learning, Mnih et al, 2015]

Case Studies: Robot Locomotion

• MDP:
• State: image of robot camera + N joint angles + accelerometer + …

• Angles are N-dimensional continuous vector!

• Processed with hand-designed feature vectors or neural networks

• Action: N motor commands (continuous vector!)
• Can’t easily compute max

!
𝑄(𝑠", 𝑎) when 𝑎 is continuous

• Use policy search methods or adapt Q learning to continuous actions

• Transition T: real world (don’t have access)
• Reward R: hand-designed rewards

• Stay upright, keep forward velocity, etc

• Learning in the real world may be slow and unsafe
• Build a simulator and learn there first, then deploy in real world

Case Studies: Language Assistants

Case Studies: Language Assistants

• Step 1: train large language model to mimic human-written text
• Query: “Where is Tehran?”
• Human-like completion: “This question always fascinated me!”

• Step 2: fine-tune model to generate helpful text
• Query: “Where is Tehran?”
• Helpful completion: “Tehran is the capital and largest city of Iran.”

• Use Reinforcement Learning in Step 2

Case Studies: Language Assistants

• MDP:
• State: sequence of words seen so far (ex. “Where is Tehran?”)

• 100,000#$$$ possible states
• Huge, but can be processed with feature vectors or neural networks

• Action: next word (ex. “It”, “chair”, “purple”, …) (so 100,000 actions)
• Hard to compute max" 𝑄(𝑠ʹ, 𝑎) when max is over 100K actions!

• Transition T: easy, just append action word to state words
• s: “My name“ a: “is“ s’: “My name is“

• Reward R: ???
• Humans rate model completions (ex. “Where is Tehran?”)

• “It is the capital and largest city of Iran“: +1
• “It is in google maps“: -1
• “Destroy all humans“: -1

• Learn a reward model /𝑅 and use that (model-based RL)

• Commonly use policy search (Proximal Policy Optimization) but looking into Q Learning

