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3 Reinforcement learning ~—/
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\/ Reinforcement Learning

e

< Still assume a markov decision process (MDP):
* Asetof statess € S
* A set of actions (per state) A
A model T(s,a,s’)
* A reward function R(s,a,s’)

Overheated

* Still looking for a policy 7t(s)

* New twist: don’t know T or R
* i.e. We don’t know which states are good or what the actions do
* Must actually try actions and states out to learn
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\/ Reinforcement Learning

= Still assume a markov decision process (MDP):
* Asetof statess € S
* A set of actions (per state) A
A model T(s,a,s’)
e A reward function R(s,a,s’) State: s Actions: a

Reward: r
e Still looking for a policy m(s) /" Environm
k ent

* New twist: don’t know T or R

* i.e. We don’t know which states are good or what the actions do

* Must actually try actions and states out to learn
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Initial

[Kohl and Stone, ICRA 2004]

A Learning Trial

After Learning [1K Trials]
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@) Video of Demo Crawler Bot
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- Example: Learning to Talk

ChatGPT: Optimizing
Language Models
for Dialogue

We've trained a model called ChatGPT which interacts in a
conversational way. The dialogue format makes it possible for
ChatGPT to answer followup questions, admit its mistakes,
challenge incorrect premises, and reject inappropriate requests.
ChatGPT is a sibling model to InstructGPT, which is trained to
follow an instruction in a prompt and provide a

detailed response.

November 30, 2022

13 minute read




Offline Solution

Online Learning
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Passive Reinforcement Learning




- Passive Reinforcement Learning

—

* Simplified task: policy evaluation

* Input: a fixed policy 7(s)

* You don’t know the transitions T(s,q,s’)
* You don’t know the rewards R(s,q,s’)
* Goal: learn the state values

* |n this case:

* Learner is “along for the ride”

* No choice about what actions to take
* Just execute the policy and learn from experience

* This is NOT offline planning! You actually take actions in the world.

~ o/ - ,\,/\



Model-Based Learning
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\/ Model-Based Learning

e

* Model-based idea:

* Learn an approximate model based on experiences
* Solve for values as if the learned model were correct

* Step 1: learn empirical MDP model
* Count outcomes s’ for each s, a
* Normalize to glve an estimate of T(S a,Ss )

* Discover each R(S, a, 3’) when we experience (s, q, s')

* Step 2: solve the learned MDP (!

* For example, use value iteration, as before



\/ Example: Model-Based Learning
— "
Episode 1 Episode 2 T(s,a,s")
B, east, C, -1 B, east, C, -1 /T(B, east, C) =1.00 A
C, east, D, -1 C, east, D, -1 %g 2:2:' 2; - 8-;2
D, exit, x, +10 D, exit, x, +10 9 J
. , i ,
Episode 3 Episode 4 R(s,a,s")
E, north, C, -1 E, north, C, -1 - EEE, easi, ([;))= 1 A
,east, D) = -
Assume: y =1 [C)’ ea.stt = '110 i’ ea.stt’ A' '110 R(D, exit, x) = +10 ~
U exi X, + exi X, -
¢ ! ! , , / \_ )
14 \/
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Analogy: Expected Age

Goal: Compute expected age of cs188 students

Known P(A)

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a4, a5, ... ay]

/ Unknown P(A): “Model Based” \

Why does this
work? Because
eventually you
learn the right
model.

\7 Pla) = nunAlr(va)

E[A]~ ) P(a)-a

SN

/ Unknown P(A): “Model Free” \

/

\_

E[A] = %Zai Z

Why does this
work? Because
samples appear

with the right

frequencies.

—
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Model-Free Learning
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\_/ N Direct Evaluation

—

N’
* Goal: compute values for each state under 1

* |[dea: average together observed sample values
* Act according to T

* Every time you visit a state, write down what the sum of
discounted rewards turned out to be from that state until

the end O{S.(;?nple.i (S) - R(S) + }/R(SI) k }/ZR(S”) + ...

* Average those sample

1
V(s) « NZ sample;(s)
[

* This is called direct evaluation 17



\/ o Example: Direct Evaluation

Episode 1 Episode 2
B, east, C, -1 B, east, C, -1
C, east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10
Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C,east, D, -1 C, east, A, -1 </
Assume:y =1 D, exit, x, +10 A, exit, x, -10

V(s) is sum of discounted rewards from s until the end, averaged over all encounters of s

_ Y,
diiilal W )
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\/ Problems with Direct Evaluation

—

“"What’s good about direct evaluation?

* It’s easy to understand
* It doesn’t require any knowledge of T, R

* It eventually computes the correct average values, using just
sample transitions

e What bad about it?

* |t wastes information about state connections

* Each state must be learned separately so, it takes a long time
to learn

* Need to have all episodes ahead of time (cannot “stream” in
transitions)
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Why Not Use Policy Evaluation?

* Simplified Bellman updates calculate V for a fixed policy: °
* Each round, replace V with a one-step-look-ahead layer over V mi(s)
VI(s) =0 h.& s)
Vg 1(8) + > T(s,m(s),s)[R(s,7(s),s) + VI (s)] ‘,,S;";T’(S),S’ "
s/ A s’

* This approach fully exploited the connections between the states
* Unfortunately, we need T and R to do it!

* Key question: how can we do this update to V without knowing T and R? ~

* |In other words, how to we take a weighted average without knowing the weights? ,
20
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\/ < Sample-Based Policy Evaluation?

—

=~ We want to improve our estimate of V by computing these averages:
Vip1(8) <= > T(s,m(s),s)[R(s,m(s),5") + V7 (s")]

S

* |dea: take samples of outcomes s’ (by doing the action!) and average

sample1 = R(s, m(s), 3/1) -+ WVkW(s’l)

samples = R(s,m(s), 8/2) 4+ kaﬂ(s/Q)

samplen, = R(s, m(s), sf/n) -+ 7\/,{”(5%)

1
Via1(8) - ) sample;
1
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-/ Temporal Difference Learning

=

-/ Big idea: learn from every experience! S
* Update V(s) each time we experience a transition (s, a, s/, r)
* Likely outcomes s’ will contribute updates more often R(S)
s, T(s)
* Temporal difference learning of values
* Policy still fixed, still doing evaluation! A g’

* Move values toward value of whatever successor occurs: running average
Sample of V(s): sample = R(s,7(s),s) +~4V™(s")
Update to V(s): VT(s) «+— (1 —a)V"™(s) + (a)sample
Same update: V7T (s) «+ V™(s) + a(sample — V" (s))

~ o/ ) ,\,/\



w Exponential Moving Average

—

% Exponential moving average

* The running interpolation update: Ly = (1 — O{) +Tp—1+ Q-

* Makes recent samples more important:

T,+(1—a) Tp1+(1—-a)? zp_o+...
1+ (1—a)+(1—-—a)?+...

Lp =

* Forgets about the past (distant past values were wrong anyway)

* Decreasing learning rate (alpha) can give converging averages



\/ _Example: Temporal Difference Learning

Assume:y=1,a=1/2 L/

V7(s) + (1 = a)V7(s) + a |R(s,m(s),s") + 4V (s ©)

24
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—~ 1D Learning Happen in the Brain!

~ N’
Do dopamine neurons report an error
~ ¢ Neurons transmit Dopamine to encode reward —_— o e
or value prediction error Reward occurs

VT(s) « V7 (s) + of sample — V7(s))

Reward predicted

* Example of Neuroscience & Al informing each Reward occurs
other

Reward predicted
No reward occurs

S cs l (No'R) “A
[A Neural Substrate of Prediction and Reward.
Schultz, Dayan, Montague. 1997] /
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> Problems with TD Value Learning

~—

~

* TD value leaning is a model-free way to do policy evaluation, mimicking bellman
updates with running sample averages

 However, if we want to turn values into a (new) policy, we’re sunk:
w(s) = argmax Q(s,a)
a

C(E.a) = ZT(S, a,s') {R(s, a,s') + ’)/V(S/)}

e |dea: learn Q-values, not values

* Makes action selection model-free too!
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Detour: Q-Value Iteration
- Q

~—

* Value iteration: find successive (depth-limited) values
e Start with V,(s) = 0, which we know is right
* Given V,, calculate the depth k+1 values for all states:

Viet1(s) < mC?XZT(S, a,s) {R(S,CL, s + ’ka(S/)}

e But Q-values are more useful, so compute them instead
 Start with Qq(s,a) =0, which we know is right
* Given Q, calculate the depth k+1 Q-values for all Q-states:

Qit1(s,0) « Y T(s,0,5) |R(s.a,5) +7 maxQy(s',a')

vu\_/
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\/ Q-Learning

-

2 Q-learning: sample-based qg-value iteration

Qit1(s,0) < Y T(s,0,5) |R(s.a,5) +7 maxQy(s',a')

a
* Learn Q(s,a) values as you go vvv
* Receive a sample (s,a,s’,r) MM -
* Consider your old estimate: Q(s,a) v v
* Consider your new sample estimate:
sample = R(s,a,s’) + ~ max Q(s',a") }g{}“{}@{}"

* Incorporate the new estimate into a running average:

Q-VALUES AFTER 1000 EPISODES

Q(87 CL) T (1 T OA)Q(S, CL) —I_ (Oé) [Sa’mple] 28
" \J [Demo: Q-learning vgndworld(LlJZ)]

\[Deso: Q-learning \crawler(Ll 3)]
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uyideo of Demo Q-Learning -- Gridworld
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\/ \/OVideo of Demo Q-Learning -- Crawler
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= Q-Learning Properties

—

¥ Amazing result: Q-learning converges to optimal policy -- even if you're
acting sub-optimally!

* This is called off-policy learning

* Caveats:
* You have to explore enough
* You have to eventually make the learning rate

small enough

* ... but not decrease it too quickly

* Basically, in the limit, it doesn’t matter how you select actions (!)



| . Active Reinforcement Learning
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\/ o Active Reinforcement Learning

—

* Full reinforcement learning: optimal policies (like value iteration)
* You don’t know the transitions T(s,q,s’)
* You don’t know the rewards R(s,q,s’)
* You choose the actions now
* Goal: learn the optimal policy / values

* In this case:
* Learner makes choices!
* Fundamental tradeoff: exploration vs. exploitation

* This is NOT offline planning! You actually take actions in the world and find
out what happen:s...

7 NS N e\



Exploration vs. Exploitation
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Video of Demo Q-learning — Manual Exploration —
Bridge Grid

40
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J How to Explore?

—

% Several schemes for forcing exploration
* Simplest: random actions (e-greedy)
* Every time step, flip a coin
* With (small) probability €, act randomly
* With (large) probability 1-g, act on current policy

* Problems with random actions?

* You do eventually explore the space, but keep
thrashing around once learning is done

* One solution: lower € over time

* Another solution: exploration functions
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deo of Demo Q-learning — Epsilon-Greedy — Crawler




\ 4

- Exploration Functions

-

*_When to explore?
* Random actions: explore a fixed amount

* Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

* Exploration function

* Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u, n) = u + k/n

Regular Q-update: Q(s,a) <—a R(s,a,s") +vmaxQ(s',a’)
a

* Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-update: Q(s,a) +-a R(s,a,s") +ymax f(Q(s',a’), N(s',a))

=

o N

v :.,
[Demo: exploration — Q-learning — c\saWr — exploratioun (unction (L1ﬁ4)]

& ¢, v is shorthand for z + (1 — a)x + av
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\*40 of Demo Q-learning — Exploration Function — Crawler

8
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9 How Can we Evaluate Exploration Methods?

Regret )

-

*“Even if you learn the optimal policy, you still

make mistakes along the way!

* Regret is a measure of your total mistake
cost: the difference between your

(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

* Minimizing regret goes beyond learning to
be optimal — it requires optimally learning
to be optimal

* Example: random exploration and
exploration functions both end up optimal,
but random exploration has higher regret




Approximate Q-Learning
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\/ Generalizing Across States

—

**Basic Q-learning keeps a table of all Q-values

* In realistic situations, we cannot possibly learn about

every single statel
* Too many states to visit them all in training
* Too many states to hold the g-tables in memory

* Instead, we want to generalize:
* Learn about some small number of training states from
experience
* Generalize that experience to new, similar situations

* This is a fundamental idea in machine learning, and we'll
see it over and over again

e \/ ' [demo —RL pa%an]



Example: Pacman

Let’s say we discover In naive Q-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:
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/
ideo of Demo Q-Learning Pacman — Tiny — Watch All _

49
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| Video of demo Q-learning Pacman — tiny — silent tr
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Video of Demo Q-Learning Pacman — Tricky — Watch All




Feature-Based Representations

~—’

* Solution: describe a state using a vector of features
(properties) f1, fo, ...

* Features are functions from states to real numbers (often
0/1) that capture important properties of the state

* Example features:
* Distance to closest ghost

Distance to closest dot

Number of ghosts

1 / (dist. to dot)?

* Is Pacman in a tunnel2 (0/1)

O ocon Etc.

* |s it the exact state on this slide?

* Can also describe a g-state (s, a) with features (e.g. Action
moves closer to food)




— Linear Value Functions

S

* Using a feature representation, we can write a Q function (or value function) for any
state using a few weights:

w1 f1(s) +wafa(s) + ... + wnfn(s)
Q<87 CL) — ’UJ]_f]_(S, a’>+w2f2(87 CL)"— . °+wnf’n(87 a’)

* Advantage: our experience is summed up in a few powerful numbers wq, wo, ...

V(s)

* Disadvantage: states may share features but actually be very different in value!

* Ex: these two states would have the same value if we don’t include ghost positions as a feature:




\/ Approximate Q-Learning

o

Qs,0) = wifils, ) Fuafa(s ) Fuwnfa(sa)

* Q-learning with linear g-functions:

transition = (s,a,r,s’)
difference = [r + 7 max Q(s, a/)] — Q(s,a)
Q(s,a) — Q(s,a) + « [difference] Exact Q’s

w; <— w; + « [difference] f;(s,a)  Approximate Q's

* Intuitive interpretation:
* Adjust weights of active features —

* e.g., If something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features |

* Formal justification: online least squares, gradient descent

A R e



fDOT(S, NORTH) = 0.5

fasr(s, NORTH) = 1.0

\

r

a = NORTH\

/

Q(s,NORTH) = +1

r + v max Q(s',a’) = —-500+40
a

= —500 /

Q(S,a ) =0

{difference — —501 >

wpor +— 4.0 + a[-501]0.5 ®
wosy — —1.0 + a[-501] 1.0

55 \/

Q(s,a) = 3.0fpor(s,a) —3.0fGs7(s,a)  pemo:sproxmap

learning pacman (L11810)]
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| Video of Demo Approximate Q-Learning -- Pacm
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| fi(x)
Prediction: Prediction:
§ = wo + w1 f1(2) 5 = wo + w1 f1 () + wo fo(x )=

"N @ S



Optimization: Least Squares™

1

2
total error =Y (y; — §:)° =3 (yz - Zw&(w))
- k

Observation y

Prediction :IIJ

59
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\_/ Minimizing Error®

e

Jmagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y — Zwkfk(flf))
k

0 error(w) B

Owm,

(y — Z’%fk(@) fm(x)
k

Wi, +— Wm + (y — Zwkfk(w)> fm(x)
k
Approximate g update explained:

Wm < Wm + & [7“ =) max Q(S/a CL,) — Q(s, a)} fm(s,a)

“target” “prediction”

—

~
v 2) \



\_/ N Conclusion

N’
* We're done with part |: search and planning!

* We've seen how Al methods can solve
problems in:

* Search

Constraint satisfaction problems

e Games

Markov decision problems

Reinforcement learning




Policy Search
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\/ N Policy Search

—

\o}
@)

* Problem: often the feature-based policies that work well (win games,
maximize utilities) aren’t the ones that approximate V / Q best
= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)
=  We'll see this distinction between modeling and prediction again later in the JI 0 100 150 200
course Training steps (in millions)
e Solution: learn policies m that maximize rewards, not the Q values that predict them

—_
ot

10

Value estimates

e Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights



Policy Search

Simplest policy search:
e Start with an initial linear value function or Q-function
* Nudge each feature weight up and down and see if your policy is better than before

Problems:

* How do we tell the policy got better?
* Need to run many sample episodes!
* If there are a lot of features, this can be impractical

Better methods exploit lookahead structure, sample wisely, change
multiple parameters...
* Policy Gradient, Proximal Policy Optimization (PPO) are examples

V\/ - o
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Case Studies of Reinforcement Learning!

e Atari game playing
 Robot Locomotion

* Language assistants






-4 Case Studies: Atari Game Playing

* MDP:

= = | =t

(e B vy B e B o

e State: image of game screen

e 2568 possible states

* Processed with hand-designed feature vectors or neural

networks Gonveiution Ganvelution Fuly connected  Full cgnnected

: =

e Action: combination of arrow keys + button (18) ] B e ==

* Transition T: gam de (don’t hav ) - 3 =
ansition T: game code (do ave access -*DQBEDQ§ o *

 Reward R: game score (don’t have access) o] a

o | E}m O

* \ery similar to our pacman MDP

* Use approximate Q learning with neural networks and e-greedy  [Human-level control through deep reinforcement
learning, Mnih et al, 2015] 4

exploration to solve

YN (U e )
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< Case Studies: Robot Locomotion

MDP:

State: image of robot camera + N joint angles + accelerometer + ...

* Angles are N-dimensional continuous vector!

* Processed with hand-designed feature vectors or neural networks

Action: N motor commands (continuous vector!)
* Can’t easily compute max Q(s’, a) when a is continuous
a

e Use policy search methods or adapt Q learning to continuous actions

Transition T: real world (don’t have access)

Reward R: hand-designed rewards
e Stay upright, keep forward velocity, etc
Learning in the real world may be slow and unsafe

e Build a simulator and learn there first, then deploy in real world

Y, (2




Brainstorm edge cases Come up with concepts

Show me a code snippet Recommend a dish

where is Tehran?




\/ Case Studies: Language Assistants

Step 1: train large language model to mimic human-written text
* Query: “Where is Tehran?”
* Human-like completion: “This question always fascinated me!”

Step 2: fine-tune model to generate helpful text
* Query: “Where is Tehran?”
* Helpful completion: “Tehran is the capital and largest city of Iran.”

Use Reinforcement Learning in Step 2
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\/ Case Studies: Language Assistants

—

~  « MDP:
» State: sequence of words seen so far (ex. “Where is Tehran?”)
« 100,0001990 possible states

* Huge, but can be processed with feature vectors or neural networks

e Action: next word (ex. “It”, “chair”, “purple”,..)(so 100,000 actions)
* Hard to compute max" Q(s’, a) when max is over 100K actions!

* Transition T: easy, just append action word to state words
e s:“My name"“ a:“is"“ §:“My name is“

* Reward R: ???
* Humans rate model completions (ex. *“Where is Tehran?”)
* “It is the capital and largest city of Iran“: +1
* “It is in google maps“: -1
* "“Destroy all humans“: -1
 Learn a reward model R and use that (model-based RL)

e Commonly use policy search (Proximal Policy Optimization) but Ioakingi\nth Learning

N/



