
CE417: Introduction to Artificial Intelligence
Sharif University of Technology
Fall 2023

Most slides have been adopted from Klein and Abdeel, CS188, UC Berkeley.

Solving problems by searching:
Uninformed Search

Soleymani

2

Outline

• Search Problems

• Uninformed Search Methods
• Depth-First Search

• Breadth-First Search

• Uniform-Cost Search

3

Vacuum world state space graph

• States?
• Actions?
• Goal test?
• Path cost?

dirt locations & robot location

Left, Right, Suck

no dirt at all locations

one per action

2×2! = 8
States

4

Example: 8-puzzle

• States?
• Actions?
• Goal test?
• Path cost?

locations of eight tiles and blank in 9 squares

move blank left, right, up, down (within the board)

e.g., the above goal state

one per move

Note: the family of sliding-block puzzles is known to be NP-complete and optimal
solution of n-Puzzle family is NP-hard.

9!/2 = 181,440
States

5

Example: 8-queens problem

• Initial State?
• States?
• Actions?
• Goal test?
• Path cost?

any arrangement of 0-8 queens on the board is a state

no queens on the board

add a queen to the state (any empty square)

8 queens are on the board, none attacked

of no interest

64×63×⋯×57 ≃ 1.8
×10"# States

search cost vs. solution path cost

6

Example: 8-queens problem
(other formulation)

• Initial state?
• States?

• Actions?

• Goal test?
• Path cost?

any arrangement of k queens one per column in the leftmost k
columns with no queen attacking another

no queens on the board

add a queen to any square in the leftmost empty column such
that it is not attacked by any other queen

8 queens are on the board

of no interest

2,057 States

7

Search problems are models

8

Search and models

• Search operates over models of the world
• The agent doesn’t actually try all the plans out in the real
world!

• Planning is all “in simulation”
• Your search is only as good as your models…

9

Search problems

• A search problem consists of:

• A state space

• A successor function
(with actions, costs)

• A start state and a goal test

• A solution is a sequence of actions (a plan) which transforms
the start state to a goal state

“N”, 1.0

“E”, 1.0

10

What’s in a state space?

} Problem: Pathing
} States: (x,y) location

} Actions: NSEW
} Successor: update location only
} Goal test: is (x,y)=END

} Problem: Eat-All-Dots
} States: {(x,y), dot booleans}

} Actions: NSEW
} Successor: update location
and possibly a dot boolean

} Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

11

State space sizes?

• World state:
• Agent positions: 120
• Food count: 30
• Ghost positions: 12
• Agent facing: NSEW

• How many
• World states?

120x(230)x(122)x4
• States for pathing?

120
• States for eat-all-dots?

120x(230)

12

Quiz: Safe passage

• Problem: eat all dots while keeping the ghosts perma-scared
• What does the state space have to specify?

• (agent position, dot booleans, power pellet booleans, remaining scared time)

13

State space

• State space: set of all reachable states from initial state
• Initial state, actions, and transition model together define it

• It forms a directed graph
• Nodes: states
• Links: actions

• Constructing this graph on demand

14

State space graphs

• State space graph: A mathematical
representation of a search problem
• Nodes are (abstracted) world configurations
• Arcs represent successors (action results)
• The goal test is a set of goal nodes (maybe only one)

• In a state space graph, each state occurs only
once!

• We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

15

State space graphs

• State space graph: A mathematical
representation of a search problem
• Nodes are (abstracted) world configurations
• Arcs represent successors (action results)
• The goal test is a set of goal nodes (maybe only one)

• In a search graph, each state occurs only
once!

• We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

S

G

d

b

p q

c

e

h

a

f

r

Tiny state space for a tiny search
problem

16

Search trees

• A search tree:
• A “what if” tree of plans and their outcomes
• The start state is the root node
• Children correspond to successors
• Nodes show states, but correspond to PLANS that achieve those states

• Nodes contain problem state, parent, path length, a depth, and a cost

• For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

17

Routing example
• On holiday in Romania; currently in Arad.

• Flight leaves tomorrow from Bucharest

• Initial state
• currently in Arad

• Formulate goal
• be in Bucharest

• Formulate problem
• states: various cities
• actions: drive between cities

• Solution
• sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Map of Romania

18

Searching with a search tree

• Search:
• Expand out potential plans (tree nodes)
• Maintain a frontier of partial plans under consideration
• Try to expand as few tree nodes as possible

19

State space graphs vs. search trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in the
search tree is an

entire PATH in the
state space graph.

Search TreeState Space Graph

20

21

Implementation: States vs. nodes
• A state is a representation of a physical configuration

• A node is a data structure constituting part of a search tree
includes state, parent node, action, path cost g(x), depth

Quiz: State Space Graphs vs. Search Trees

22

S G

b

a

Consider this 4-state graph: How big is its search tree (from s)?

s
b

b G a

a

G

a G b G

… …

} Important: Lots of repeated structure in the search tree!

Graph Search

• Example: rectangular grid

explored

frontier

…

23

Tree Search

24

Tree search algorithm

• Basic idea
• offline, simulated exploration of state space by generating successors of

already-explored states (a.k.a. expanding states)

Frontier: all leaf nodes available for expansion at any given point

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do

if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Different data structures (e.g, FIFO, LIFO) for frontier can cause different orders of
node expansion and thus produce different search algorithms.

25

Graph search

• Redundant paths in tree search: more than one way to get from
one state to another
• may be due to a bad problem definition or the essence of the problem
• can cause a tractable problem to become intractable

explored set: remembered every explored node

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

26

Search for 8-puzzle Problem

source: iis.kaist.ac.kr/es

Start Goal

27

General tree search

• Important ideas:
• Frontier
• Expansion
• Exploration strategy

• Main question: which frontier nodes to explore?

28

29

Example: Tree search

a a p

q

h

f

r

q

c G

a

q

qp

q

a

S

G

d

b

p q

c

e

h

a

f

r

fd

S

d e p

e

h r

f

c G

b c

s
s à d
s à e
s à p
s à d à b
s à d à c
s à d à e
s à d à e à h
s à d à e à r
s à d à e à r à f
s à d à e à r à f à c
s à d à e à r à f à G

Uninformed (blind) search strategies

• No additional information beyond the problem definition
• Breadth-First Search (BFS)
• Uniform-Cost Search (UCS)
• Depth-First Search (DFS)
• Depth-Limited Search (DLS)
• Iterative Deepening Search (IDS)

30

Breadth-First Search

31

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation:
frontier is a FIFO queue

32

Search algorithm properties

• Complete: Guaranteed to find a solution if one exists?
• Optimal: Guaranteed to find the least cost path?
• Time complexity?
• Space complexity?

• Cartoon of search tree:
• b is the branching factor
• m is the maximum depth
• d is the depth of the shallowest goal
• solutions at various depths

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

33

Breadth-First Search (BFS) properties

• What nodes does BFS expand?
• Processes all nodes above shallowest solution
• Let depth of shallowest solution be d

• How much space does the frontier take?

• Is it complete?

• Is it optimal?

…
b

1 node
b nodes

b2 nodes

bm nodes

d tiers

bd nodes

34

Properties of breadth-first search

• Complete?
• Yes (for finite 𝑏 and 𝑑)

• Time
• 𝑏 + 𝑏2 + 𝑏3 +⋯ + 𝑏𝑑 = 𝑂(𝑏𝑑) total number of generated nodes

• goal test has been applied to each node when it is generated

• Space
• 𝑂(𝑏!"#) + 𝑂(𝑏𝑑) = 𝑂(𝑏𝑑)

• Tree search does not save much space while may cause a great time excess

• Optimal?
• Yes, if path cost is a non-decreasing function of d

• e.g. all actions having the same cost

explored frontier

35

Properties of breadth-first search

• Space complexity is a bigger problem than time complexity
• Time is also prohibitive
• Exponential-complexity search problems cannot be solved by uninformed

methods (only the smallest instances)

36

1 million node/sec, 1kb/node 𝑏 = 10

d Time Memory

6 1.1 secs 1 gigabytes

8 2 minutes 103 gigabytes

10 3 hours 10 terabytes

12 13 days 1 pentabyte

14 3.5 years 99 pentabytes

16 350 years 10 exabytes

Depth-First Search

37

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b
a

c

e

r

Strategy: expand a
deepest node first

Implementation:
frontier is a LIFO stack

38

Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

• What nodes DFS expand?
• Some left prefix of the tree.
• Could process the whole tree!
• If m is finite, can take time O(bm)

• How much space does the frontier take?
• Only has siblings on path to root, so O(bm)

• Is it complete?
• m could be infinite, so only if we prevent cycles (more later)

• Is it optimal?
• No, it finds the “leftmost” solution, regardless of depth or cost

39

Properties of DFS
• Complete?
• Not complete (repeated states & redundant paths)

• Time
• 𝑂(𝑏𝑚): terrible if𝑚 is much larger than 𝑑

• In tree-version, 𝑚 can be much larger than the size of the state space

• Space
• 𝑂(𝑏𝑚), i.e., linear space complexity for tree search

• So depth first tree search as the base of many AI areas
• Recursive version called backtracking search can be implemented in
𝑂(𝑚) space

• Optimal?
• No

40

DFS: tree-search version

Video of Demo Maze Water DFS/BFS (part 1)

41

Video of Demo Maze Water DFS/BFS (part 2)

42

Quiz: DFS vs. BFS

43

Quiz: DFS vs. BFS

• When will BFS outperform DFS?

• When will DFS outperform BFS?

44

Iterative Deepening Search

…
b

• Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
• Run a DFS with depth limit 1. If no solution…
• Run a DFS with depth limit 2. If no solution…
• Run a DFS with depth limit 3. …..

• Isn’t that wastefully redundant?
• Generally most work happens in the lowest

level searched, so not so bad!

45

IDS: Example l =0

46

IDS: Example l =1

47

IDS: Example l =2

48

IDS: Example l =3

49

Iterative Deepening Search (IDS)

• Combines benefits of DFS & BFS
• DFS: low memory requirement
• BFS: completeness & also optimality for special path cost functions

• Not such wasteful (most of the nodes are in the bottom level)

50

Properties of iterative deepening search
• Complete?
• Yes (for finite 𝑏 and 𝑑)

• Time
• 𝑑×𝑏1+ (𝑑 − 1)×𝑏2+⋯+ 2×𝑏!"# + 1×𝑏! = 𝑂(𝑏𝑑)

• Space
• 𝑂(𝑏𝑑)

• Optimal?
• Yes, if path cost is a non-decreasing function of the node depth

• IDS is the preferred method when search space is large and the
depth of solution is unknown

51

Iterative deepening search

• Number of nodes generated to depth d:
𝑁𝐼𝐷𝑆 = 𝑑×𝑏1+ (𝑑 − 1)×𝑏2+ … + 2×𝑏456 + 1×𝑏4

= 𝑂(𝑏𝑑)

• For 𝑏 = 10, 𝑑 = 5, we compute number of generated nodes:
• NBFS = 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110
• NIDS = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450
• Overhead of IDS = (123,450 - 111,110)/111,110 = 11%

52

Cost-Sensitive Search

} BFS finds the shortest path in terms of number of actions.
} It does not find the least-cost path.
} We will now cover a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

1
5

1

3
2

2

53

Uniform Cost Search

54

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a cheapest
node first:

frontier is a priority queue
(priority: cumulative cost)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

55

3

Uniform-Cost Search (UCS)

• Expand node 𝑛 (in the frontier) with the lowest path cost 𝑔(𝑛)
• Extension of BFS that is proper for any step cost function

• Implementation: Priority queue (ordered by path cost) for
frontier

• Equivalent to breadth-first if all step costs are equal
• Two differences

• Goal test is applied when a node is selected for expansion
• A test is added when a better path is found to a node currently on the frontier

56

80 + 97 + 101 < 99 + 211

…

Uniform-Cost Search (UCS) Properties

• What nodes does UCS expand?
• Processes all nodes with cost less than cheapest solution!
• If that solution costs C* and arcs cost at least e , then the

“effective depth” is roughly C*/e
• Takes time O(bC*/e) (exponential in effective depth)

• How much space does the frontier take?
• Has roughly the last tier, so O(bC*/e)

• Is it complete?
• Assuming best solution has a finite cost and minimum arc

cost is positive, yes!

• Is it optimal?
• Yes!

b

C*/e “tiers”
c £ 3

c £ 2

c £ 1

57

Uniform Cost search (proof of optimality)

• Lemma: If UCS selects a node 𝑛 for expansion, the optimal
solution to that node has been found.

Proof by contradiction: Another frontier node 𝑛$ must exist on the
optimal path from initial node to 𝑛 (using graph separation property).
Moreover, based on definition of path cost (due to non-negative step
costs, paths never get shorter as nodes are added), we have 𝑔 𝑛$
≤ 𝑔 𝑛 and thus 𝑛$ would have been selected first.

⇒ Nodes are expanded in order of their optimal path cost.

58

Properties of uniform-cost search

• Complete?
• Yes, if step cost ≥ 𝜀 > 0 (to avoid infinite sequence of zero-cost

actions)

• Time
• Number of nodes with “𝑔 ≤ cost of optimal solution”, 𝑂(𝑏#% ⁄'∗ ()

where 𝐶∗ is the optimal solution cost
• 𝑂(𝑏!"#) when all step costs are equal

• Space
• Number of nodes with 𝑔 ≤ cost of optimal solution, 𝑂(𝑏#% ⁄'∗ ()

• Optimal?
• Yes – nodes expanded in increasing order of 𝑔(𝑛)

Difficulty: many long paths of actions may exist with cost≤ 𝐶∗

59

Uniform cost issues

• Remember: UCS explores increasing cost contours

• The good: UCS is complete and optimal!

• The bad:
• Explores options in every “direction”
• No information about goal location

• We’ll fix that soon!
Start Goal

…

c £ 3
c £ 2

c £ 1

60

The one queue

• All these search algorithms are the
same except for frontier strategies
• Conceptually, all frontiers are priority

queues (i.e. collections of nodes with
attached priorities)

• Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

• Can even code one implementation
that takes a variable queuing object

61

Bidirectional search

• Simultaneous forward and backward search (hoping that they
meet in the middle)
• Idea: 𝑏!/+ + 𝑏!/+ is much less than 𝑏!

• “Do the frontiers of two searches intersect?” instead of goal test
• First solution may not be optimal

• Implementation
• Hash table for frontiers in one of these two searches

• Space requirement: most significant weakness

• Computing predecessors?
• May be difficult

• List of goals? a new dummy goal
• Abstract goal (checkmate)?!

62

Summary of algorithms (tree search)

a Complete if b is finite

b Complete if step cost ≥ ε>0

c Optimal if step costs are equal

d If both directions use BFS

63

