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Optimization



Local search in continuous spaces
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Outline

• Introduction to optimization

• Convexity

• Gradient descent
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Continuous optimization
• The problems we have seen so far (i.e., search) in class involve 

making decisions over a discrete space of choices
• An amazing property:

• One of the most significant trends in AI in the past 15 years 
has been the integration of optimization methods throughout 
the field
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Optimization definitions
• Optimization problems:

min
!
𝑓(𝑥)

subject to 𝑥 ∈ 𝒞
• It means that we want to find the value of 𝑥 that achieves the 

smallest possible value of 𝑓(𝑥), out of all points in 𝒞

• Important terms
• 𝑥 ∈ ℝ" − optimization variable(vector with n real-valued entries)
• 𝑓: ℝ" → ℝ− optimization objective
• 𝒞 ⊆ ℝ" − constraint set
• 𝑥∗ ≡ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓 𝑥 − optimal objective
• 𝑓∗ ≡ 𝑓 𝑥∗ ≡ min

!∈𝒞
𝑓 𝑥 − optimal objective
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Handling a continuous state/action space

• Discretize it!!!
• Define a grid with increment d , use any of the discrete algorithms

• Choose random perturbations to the state
• First-choice hill-climbing: keep trying until something improves the

state
• Simulated annealing

• Compute gradient of f(x) analytically
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Example: Weber point
• Given a collection of cities (assume on 2D plane) how can we 

find the location that minimizes the sum of distances to all 
cities?
• Denote the locations of the cities as (𝑥!, 𝑦!), … , 𝑥" , 𝑦"

• Write as the optimization problem:
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min
(",$)

$
&'(

)
(𝑥 − 𝑥&)*+(𝑦 − 𝑦&)*



How to solve?
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• 𝛻𝑓 = 0 to find extremums

• only for simple cases



Example

• Select locations for 3 airports such that sum of squared distances 
from each city to its nearest airport is minimized  
• (𝑥(+, 𝑦(+) , (𝑥*+, 𝑦*+), (𝑥,+, 𝑦,+)
• 𝐹(𝑥(+, 𝑦(+, 𝑥*+, 𝑦*+, 𝑥,+, 𝑦,+) = ∑-'(, ∑&∈)!(𝑥-

+ − 𝑥&)*+(𝑦-+ − 𝑦&)*



Example: Siting airports in Romania
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Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport locations
𝑥 = 𝑥"#, 𝑦"# , 𝑥$#, 𝑦$# , (𝑥%#, 𝑦%#)

City locations (𝑥𝑐, 𝑦𝑐)

Ci = cities closest to airport i

Objective: minimize
𝑓(𝒙) = ∑"#$

% ∑&∈(!(𝑥"
) − 𝑥&)*+(𝑦"

) − 𝑦&)*
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Example: machine learning
• As we will see in much more detail shortly, virtually all 

(supervised) machine learning algorithms boil down to solving 
an optimization problem

min
#
)
$%!

&

𝑙(𝑓#(𝑥 $ ), 𝑦($))

• 𝑥($) ∈ 𝒳 are inputs
• 𝑦($) ∈ 𝒴 are outputs
• 𝑙 is a loss function
• 𝑓# is a hypothesis function parameterized by 𝜃, which are the 

parameters of the model we are optimizing over
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Example: robot trajectory planning
• Many robotic planning tasks are more complex than shortest 

path, e.g. have robot dynamics, require “smooth” controls

• Common to formulate planning problem as an optimization 
task

• Robot state 𝑥) and control inputs 𝑢_𝑡
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Classes of optimization problems
• Many different names for types of optimization problems: linear 

programming, quadratic programming, nonlinear programming, semidefinite 
programming, integer programming, geometric programming, mixed linear 
binary integer programming (the list goes on and on, can all get a bit 
confusing)

• We’re instead going to focus on two dimensions: convex vs. nonconvex and 
constrained vs. unconstrained
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Constrained vs. unconstrained
• In unconstrained optimization, every point 𝑥 ∈ ℝ1 is feasible, so singular 

focus is on minimizing 𝑓(𝑥)
• In contrast, for constrained optimization, may be hard to even find a point 𝑥
∈ 𝒞

• Often leads to different methods for optimization
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Convex vs. nonconvex optimization
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Convex vs. nonconvex optimization

• Convex problem:

• Where 𝑓 is a convex function and 𝒞 is a convex set
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min
!
𝑓(𝑥)

subject to 𝑥 ∈ 𝒞



Convex Sets

• A set 𝒞 is convex if, for any 𝑥, 𝑦 ∈ 𝒞 and 0 ≤ 𝜃 ≤ 1:
• 𝜃𝑥 + 1 − 𝜃 𝑦 ∈ 𝒞

• Examples:
• All points 𝒞 = ℝ*

• Intervals 𝐶 = 𝑥 ∈ ℝ* | 𝑙 ≤ 𝑥 ≤ 𝑢 (elementwise inequality)

• Linear equalities 𝐶 = 𝑥 ∈ ℝ* | A𝑥 = b for A ∈ ℝ+∗*, 𝑏 ∈ ℝ+

• Intersection of convex sets 𝐶 = ⋂-./
+ 𝐶-
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Convex Functions

• A function 𝑓: ℝ1→ℝ is convex if, for any 𝑥, 𝑦 ∈ ℝ1 and 𝜃 ∈ 0,1 :

𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦

• If 𝑓 is convex then −𝑓 is concave

• Convex functions “curve upwards” (or at least not downwards)

• 𝑓 is affine if it is both convex and concave, must be of form:

𝑓 𝑥 = 𝑎2𝑥 + 𝑏 = $
-'(

1

𝑎-𝑥- + 𝑏

for 𝑎 ∈ ℝ1 , 𝑏 ∈ ℝ
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Examples of convex functions
• Exponential: 𝑓 𝑥 = exp 𝑎𝑥 , 𝑎 ∈ ℝ
• Negative logarithm: 𝑓 𝑥 = − log 𝑥 , 𝑤𝑖𝑡ℎ 𝑑𝑜𝑚𝑎𝑖𝑛 𝑥 > 0
• Squared Euclidean norm: 𝑓 𝑥 = 𝑥 ,

, = 𝑥-𝑥 = ∑./0" 𝑥.,

• Euclidean norm: 𝑓 𝑥 = 𝑥 ,

• Non-negative weighted sum of convex functions:

𝑓 𝑥 = L
./0

1

𝑤.𝑓. 𝑥 , 𝑤. ≥ 0, 𝑓. 𝑐𝑜𝑛𝑣𝑒𝑥
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Poll: Convex sets and functions
Which of the following functions or sets are convex?

• A union of two convex sets 𝒞 = 𝒞! ∪ 𝒞9
• The set 𝑥 ∈ ℝ9 𝑥 ≥ 0, 𝑥!𝑥9 ≥ 1
• The function 𝑓:ℝ9→ ℝ, 𝑓 𝑥 = 𝑥!𝑥9
• The function 𝑓:ℝ9→ ℝ, 𝑓 𝑥 = 𝑥!9 + 𝑥99 + 𝑥!𝑥9
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Convex optimization
•The key aspect of convex optimization problems that make 

them tractable is that all local optima are global optima

•Definition: a point 𝑥 is globally optimal (or global minimum) if 
𝑥 is feasible and there is no feasible 𝑦 such that 𝑓(𝑦) < 𝑓(𝑥)

•Definition: a point 𝑥 is locally optimal if 𝑥 is feasible and there 
is some 𝑅 > 0 such that for all feasible 𝑦 with 𝑥 − 𝑦 9
≤ 𝑅, 𝑓(𝑥) ≤ 𝑓(𝑦)

•Theorem: for a convex optimization problem all locally optimal 
points are globally optimal
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Proof of global optimality
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The benefit of optimization

• One of the key benefits of looking at problems in AI as 
optimization problems: we separate out the definition of the 
problem from the method for solving it

• For many classes of problems, there are off-the-shelf solvers 
that will let you solve even large, complex problems, once you 
have put them in the right form
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Optimization in practice
• We won’t discuss this too much yet, but one of the beautiful properties of 

optimization problems is that there exists a wealth of tools that can solve them 
using very simple notation

• Example: solving Weber point problem using cvxpy (http://cvxpy.org )
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http://cvxpy.org/


Outline

• Introduction to optimization

• Convexity

• Gradient descent (as an optimization method)
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The gradient
• A key concept in solving optimization problems is the notation of the 

gradient of a function (multi-variate analogue of derivative)

• For 𝑓: ℝ1 → ℝ, gradient is defined as vector of partial derivatives

• Points in “steepest direction” of increase in function 𝑓
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Gradient descent
• Gradient motivates a simple algorithm for minimizing 𝑓(𝑥): take small steps in the 

direction of the negative gradient

• “Convergence” can be defined in a number of ways
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Gradient descent works
• Theorem: For differentiable 𝑓 and small enough 𝛼, at any point 
𝑥 that is not a (local) minimum

𝑓(𝑥 − 𝛼𝛻:𝑓 𝑥 ) < 𝑓(𝑥)
• i.e., gradient descent algorithm will decrease the objective
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Gradient descent works (cont)

• Works for both convex and non-convex functions, but this doesn’t actually prove 
that gradient descent converges, just that it decreases objective
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Gradient descent in practice
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Poll: modified gradient descent
• Consider an alternative version of gradient descent, where instead of 

choosing an update 𝑥 − 𝛼𝛻!𝑓 𝑥
• we chose some other direction 𝑥 + 𝛼𝑣 where 𝑣 has a negative inner 

product with the gradient 𝛻!𝑓 𝑥 "𝑣 < 0

•Will this update, for suitably chosen 𝛼, still decrease the objective?

1) No, not necessarily (for either convex or nonconvex functions)

2) Only for convex functions

3) Only for nonconvex functions

4) Yes, for both convex and nonconvex functions
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Gradient ascent for maximization
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1 ( )t t tfa+ ¬ + Ñx x x



Gradient ascent (step size)
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• Adjusting 𝛼 in gradient descent
• Line search
• Newton-Raphson

1 1( ) ( )t t t t
f f+ -¬ - Ñx x H x x

𝐻$; =
𝜕9𝑓
𝜕𝑥$𝜕𝑥;



Dealing with constraints, non-
differentiability
• For settings where we can easily project points onto the constraint set 𝒞, can use a 

simple generalization called projected gradient descent

Repeat: 𝑥 ← 𝑃" 𝑥 − 𝛼𝛻!𝑓 𝑥

• If 𝑓 is not differentiable, but continuous, it still has what is called a subgradient, can 
replace gradient with subgradient in all cases (but theory/practice of convergence is 
quite different)
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