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Reinforcement Learning
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Reinforcement Learning
• Still assume a Markov decision process (MDP):

• A set of states s Î S
• A set of actions (per state) A(s)
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Still looking for a policy p(s)

• New twist: don’t know T or R
• I.e. we don’t know which states are good or what the actions do
• Must actually try actions and states out to learn
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Reinforcement Learning

• Basic idea:
• Receive feedback in the form of rewards
• Agent’s utility is defined by the reward function
• Must (learn to) act so as to maximize expected rewards
• All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r
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Example: Samuel’s Checker Player (1956-67)
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Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]
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Example: Learning to Walk

Initial [Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]
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Example: Learning to Walk

Training [Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]
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Finished [Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

Example: Learning to Walk



Example: Sidewinding
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[Andrew Ng]



The Crawler!
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Video of Demo Crawler Bot
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Example: Breakout (DeepMind)
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[© TwoMinuteLectures]



Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning
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RL vs. MDP
• RL isn’t just planning, it is also learning!

• There is an MDP, but you can’t solve it with just computation
• You need to actually act to figure it out

• Important ideas in reinforcement learning that came up
• Exploration: you have to try unknown actions to get information
• Exploitation: eventually, you have to use what you know
• Regret: early on, you inevitably “make mistakes” and lose reward
• Sampling: you may need to repeat many times to get good estimates
• Generalization: what you learn in one state may apply to others too

15



Approaches to Reinforcement Learning
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• Model-based: Learn the model, solve it, execute the solution

• Learn values from experiences, use to make decisions
• Direct evaluation
• Temporal difference learning
• Q-learning

• Learn policies directly



Model-Based RL
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Model-Based Learning
• Model-Based Idea:

• Learn an approximate model based on experiences
• Solve for values as if the learned model were correct

• Step 1: Learn empirical MDP model
• Count outcomes s’ for each s, a
• Normalize to give an estimate of
• Discover each when we experience the transition

• Step 2: Solve the learned MDP
• For example, use value iteration, as before
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Example: Model-Based Learning

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…
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Pros and cons
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• Pro:
• Makes efficient use of experiences (low sample complexity)

• Con:
• May not scale to large state spaces

• Learns model one state-action pair at a time (but this is fixable)
• Cannot solve MDP for very large |S| (also somewhat fixable)

• Much harder when the environment is partially observable



Model-Free Learning

21



Reinforcement Learning
• We still assume an MDP:

• A set of states s Î S
• A set of actions (per state) A(s)
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Still looking for a policy p(s)

• New twist: don’t know T or R, so must try out actions

• Big idea: Compute all averages over T using sample outcomes
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Example: Expected Age

Goal: Compute expected age of cs188 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.
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Passive vs. Active RL
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Passive Reinforcement Learning
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Passive Reinforcement Learning
• Simplified task: policy evaluation

• Input: a fixed policy p(s)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• Goal: learn the state values 𝑉!(𝑠)

• In this case:
• Learner is “along for the ride”
• No choice about what actions to take
• Just execute the policy and learn from experience
• This is NOT offline planning! You actually take actions in the world.
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Direct Evaluation (Monte Carlo)
• Goal: Estimate Vp(s), i.e., expected total discounted

reward from s onwards

• Idea: Average together observed sample values
• Act according to p
• Every time you visit a state, write down what the sum of

discounted rewards turned out to be
• Average those samples

• This is called direct evaluation by Monte Carlo
estimation (or direct utility estimation)
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Example: Direct Evaluation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E

+8 +4 +10

-10

-2
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Problems with Direct Evaluation

• What’s good about direct evaluation?
• It’s easy to understand
• It doesn’t require any knowledge of T, R
• It eventually computes the correct average values,

using just sample transitions

• What’s bad about it?
• It ignores information about state connections
• Each state must be learned separately
• So, it takes a long time to learn

Output Values

If B and E both go to C 
under this policy, how can 
their values be different?
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A

B C D

E

+8 +4 +10

-10

-2



Why Not Use Policy Evaluation?
• Simplified Bellman updates calculate V for a fixed policy:

• Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections between the states
• Unfortunately, we need T and R to do it!

• Key question: how can we do this update to V without knowing T and R?
• In other words, how to we take a weighted average without knowing the weights?

p(s)

s

s, p(s)

s, p(s),s’
s’
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Sample-Based Policy Evaluation?
} We want to improve our estimate of V by computing these averages:

} Idea: Take samples of outcomes s’ (by doing the action!) and average

p(s)
s

s, p(s)

s1's2' s3'
s, p(s),s’

s'

Almost!  But we can’t rewind 
time to get sample after 

sample from state s.
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Temporal Difference (TD) Learning
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Temporal Difference Learning
• Big idea: learn from every experience!

• Update V(s) each time we experience a transition (s, a, s’, r)
• Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
• Policy still fixed, still doing evaluation!
• Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:
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Exponential Moving Average
• Exponential moving average

• The running interpolation update:

• Makes recent samples more important:

• Forgets about the past (distant past values were wrong anyway)

• Decreasing learning rate (alpha) can give converging averages
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Example: Temporal Difference Learning

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States
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Model-Free Learning
• Model-free (temporal difference) learning
• Experience world through episodes

• Update estimates each transition

• Over time, updates will mimic Bellman
updates

r

a
s

s, a

s’
a’

s’, a’

s’’
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The Story So Far: MDPs and RL
Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning
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Detour: Q-Value Iteration
• Value iteration: find successive (depth-limited) values

• Start with V0(s) = 0, which we know is right
• Given Vk, calculate the depth k+1 values for all states:

• But Q-values are more useful, so compute them instead
• Start with Q0(s,a) = 0, which we know is right
• Given Qk, calculate the depth k+1 q-values for all q-states:
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Problems with TD Value Learning

• TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

• However, if we want to turn values into a (new) policy, we’re sunk:

• Idea: learn Q-values, not values

• Makes action selection model-free too!

a

s

s, a

s,a,s’
s’
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Approximating Values through Samples
• Policy Evaluation:

• Value Iteration:

• Q-Value Iteration:
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Q-Learning

• Q-Learning: sample-based Q-value iteration

• But can’t compute this update without knowing T, R

• Learn Q(s,a) values as you go
• Receive a sample (s,a,s’,r)
• Consider your old estimate:
• Consider your new sample estimate:

• Incorporate the new estimate into a running
average:

no longer
policy evaluation! 
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Video of Demo Q-Learning -- Gridworld

42



Video of Demo Q-Learning -- Crawler
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Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy --
even if samples are generated from a suboptimal policy!

• This is called off-policy learning

• Caveats:
• You have to explore enough (eventually try every state/action

pair infinitely often)
• You have to decrease the learning rate appropriately
• Basically, in the limit, it doesn’t matter how you select actions (!)
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Summary
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• RL solves MDPs via direct experience of transitions and rewards
• There are several schemes:
• Learn the MDP model and solve it
• Learn V directly from sums of rewards, or by TD local adjustments

• Still need a model to make decisions by lookahead
• Learn Q by local Q-learning adjustments, use it directly to pick actions

• Big missing pieces:
• How to explore without too much regret?
• How to scale this up to Tetris (1060), Go (10172), StarCraft (|A|=1026)?



Active RL
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Active RL
• Full reinforcement learning: optimal policies (like value iteration)

• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• You choose the actions now
• Goal: learn the optimal policy / values

• In this case:
• Learner makes choices!
• Fundamental tradeoff: exploration vs. exploitation
• This is NOT offline planning! You actually take actions in the world and

find out what happens…
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Model-Free Learning

• act according to current optimal (based on Q-Values)

• but also explore…

48



Exploration vs. Exploitation
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Exploration vs exploitation
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• Exploration: try new things
• Exploitation: do what’s best given what you’ve learned so far
• Key point: pure exploitation often gets stuck in a rut and never

finds an optimal policy!



Exploration method 1: e-greedy
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• e-greedy exploration
• Every time step, flip a biased coin
• With (small) probability e, act randomly
• With (large) probability 1-e, act on current policy

• Properties of e-greedy exploration
• Every s,a pair is tried infinitely often
• Does a lot of stupid things

• Jumping off a cliff lots of times to make sure it hurts
• Keeps doing stupid things for ever

• Decay e towards 0



Video of Demo Q-learning – Manual Exploration 
– Bridge Grid 
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Q-learning: Policy
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• Greedy action selection:

𝜋 𝑠 = argmax
!

𝑄(𝑠, 𝑎)

• 𝜖 -greedy: greedy most of the times, occasionally take a
random action

• Softmax policy: Give a higher probability to the actions that
currently have better utility, e.g,

𝜋 𝑠, 𝑎 =
𝑏%(&,()

∑(! 𝑏%(&,(
!)

• After learning 𝑄∗, the policy is greedy?



Q-learning Algorithm

54

} Initialize 𝑄(𝑠, 𝑎) arbitrarily
} Repeat (for each episode):
} Initialize 𝑠
} Repeat (for each step of episode):
} Choose 𝑎 from 𝑠 using a policy derived from 𝑄
} Take action 𝑎, receive reward 𝑟, observe new state 𝑠!

} 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
"!

𝑄 𝑠!, 𝑎! − 𝑄 𝑠, 𝑎

} 𝑠 ← 𝑠!

} until 𝑠 is terminal

e.g., ε-greedy, softmax, …



Q-learning convergence
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• Q-learning converges to optimal Q-values if
• Every state is visited infinitely often
• The policy for action selection becomes greedy as time
approaches infinity

• The step size parameter is chosen appropriately

• Stochastic approximation conditions
• The learning rate is decreased fast enough but not too fast



Video of Demo Q-Learning Auto Cliff Grid
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Video of Demo Q-learning – Epsilon-Greedy –
Crawler 
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Video of Demo Q-Learning -- Crawler
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Exploration Functions
• When to explore?

• Random actions: explore a fixed amount
• Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring
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Exploration Functions

• Exploration function
• Takes a value estimate 𝑢 and a visit count 𝑛, and

returns an optimistic utility, e.g.

• Regular Q-update:
• 𝑄(𝑠, 𝑎) ¬ (1 − a) × 𝑄(𝑠, 𝑎) + a × [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) ]

• Modified Q-update:
• 𝑄(𝑠, 𝑎)¬ (1 − a) × 𝑄(𝑠, 𝑎) + a × [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 𝑄(𝑠", 𝑎#) ]

• Modified Q-update II:
• 𝑄(𝑠, 𝑎)¬ (1 − a) × 𝑄(𝑠, 𝑎) + a × [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max$!𝑓(𝑄(𝑠′, 𝑎′),𝑁(𝑠′, 𝑎′))]
• Note: this propagates the “bonus” back to states that lead to unknown states as

well!

60

𝑎# = argmax$!𝑓(𝑄(𝑠′, 𝑎′),𝑁(𝑠′, 𝑎′))



Video of Demo Q-learning – Exploration 
Function – Crawler 

61



Regret
• Even if you learn the optimal policy, you still make mistakes along the way!

• Regret is a measure of your total mistake cost: the difference between your
(expected) rewards, including youthful suboptimality, and optimal (expected)
rewards

• Minimizing regret goes beyond learning to be optimal – it requires optimally learning
to be optimal
• Example: random exploration and exploration functions both end up optimal, but random

exploration has higher regret
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Tabular methods: Problem
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• All of the introduced methods maintain a table

• Table size can be very large for complex environments
• Too many states to visit them all in training

• We may not even visit some states

• Too many states to hold the q-tables in memory
• But computation and memory problem



Approximate Q-Learning
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Generalizing Across States
• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly learn
about every single state!
• Too many states to visit them all in training
• Too many states to hold the q-tables in memory

• Instead, we want to generalize:
• Learn about some small number of training states from

experience
• Generalize that experience to new, similar situations
• This is a fundamental idea in machine learning, and we’ll

see it over and over again
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Example: Pacman

Let’s say we discover 
through experience 

that this state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!
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Video of Demo Q-Learning Pacman – Tiny –
Watch All
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Video of Demo Q-Learning Pacman – Tiny –
Silent Train
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Video of Demo Q-Learning Pacman – Tricky –
Watch All
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Feature-Based Representations

• Solution: describe a state using a vector
of features (properties)
• Features are functions from states to real

numbers (often 0/1) that capture important
properties of the state

• Example features:
• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2
• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

• Can also describe a q-state (s, a) with features
(e.g. action moves closer to food)
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Linear Value Functions
• Using a feature representation, we can write a Q function (or value

function) for any state using a few weights:

• With the wrong features, the best possible approximation may be terrible!

• But in practice we can compress a value function for chess (1043 states)
down to about 30 weights and get decent play!!!

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but actually be very different in
value!
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Approximate Q-Learning

• Q-learning with linear Q-functions:

• Intuitive interpretation:
• Adjust weights of active features
• E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

• Formal justification: online least squares

Exact Q’s

Approximate Q’s
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Example: Q-Pacman
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Video of Demo Approximate Q-Learning --
Pacman
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Q-Learning and Least Squares
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Linear Approximation: Regression*

Prediction: Prediction:
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Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation
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Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”
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Overfitting: Why Limiting Capacity Can 
Help*
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Policy Search
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Policy Search
• Problem: often the feature-based policies that work well (win games,

maximize utilities) aren’t the ones that approximate V / Q best
• Q-learning’s priority: get Q-values close (modeling)
• Action selection priority: get ordering of Q-values right (prediction)
• We’ll see this distinction between modeling and prediction again later in the course

• Solution: learn policies that maximize rewards, not the values that predict
them

• Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by
hill climbing on feature weights
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Policy Search
• Simplest policy search:
• Start with an initial linear value function or Q-function
• Nudge each feature weight up and down and see if your policy is better

than before

• Problems:
• How do we tell the policy got better?
• Need to run many sample episodes!
• If there are a lot of features, this can be impractical

• Better methods exploit lookahead structure, sample wisely,
change multiple parameters…
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Example from Pieter Abbeel



The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free
Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

*use features
to generalize

*use features
to generalize
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Summary
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• Exploration vs. exploitation
• Exploration guided by unfamiliarity and potential
• Appropriately designed bonuses tend to minimize regret

• Generalization allows RL to scale up to real problems
• Represent V or Q with parameterized functions
• Adjust parameters to reduce sample prediction error



Conclusion
• We’re done with Part I: Search and

Planning!

• We’ve seen how AI methods can solve
problems in:
• Search
• Constraint Satisfaction Problems
• Games
• Markov Decision Problems
• Reinforcement Learning

• Next up: Part II: Reasoning, Uncertainty and
Learning!
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