

CE417: Introduction to Artificial Intelligence Sharif University of Technology Fall 2023

Soleymani

Slides have been adopted from Klein and Abdeel, CS188, UC Berkeley.

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A(s)
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy π(s)
- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Example: Samuel's Checker Player (1956-67)

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

[Kohl and Stone, ICRA 2004]

Initial

[Video: AIBO WALK – initial]

[Kohl and Stone, ICRA 2004]

Training

[Video: AIBO WALK – training]

[Kohl and Stone, ICRA 2004]

Finished

[Video: AIBO WALK - finished]

Example: Sidewinding

[Andrew Ng]

The Crawler!

Video of Demo Crawler Bot

4	Applet	-			
	(Run Skip 1000000 step	Stop Skip 30000 steps	Reset speed counter	Reset Q
	average speed	: 2.311914863606509			
	٦	1			
L	ер	0.8 eps++	gam- 0.9 gam	++ alpha 1.0	alpha++

Example: Breakout (DeepMind)

[© TwoMinuteLectures]

Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning

RL vs. MDP

- RL isn't just planning, it is also learning!
 - There is an MDP, but you can't solve it with just computation
 - You need to actually act to figure it out
- Important ideas in reinforcement learning that came up
 - **Exploration**: you have to **try unknown actions** to get information
 - **Exploitation**: eventually, you have to use what you know
 - *Regret*: early on, you inevitably "make mistakes" and lose reward
 - *Sampling*: you may need to repeat many times to get good estimates
 - *Generalization*: what you learn in one state may apply to others too

Approaches to Reinforcement Learning

- Model-based: Learn the model, solve it, execute the solution
- Learn values from experiences, use to make decisions
 - Direct evaluation
 - Temporal difference learning
 - Q-learning
- Learn policies directly

Model-Based RL

Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\widehat{R}(s, a, s')$ when we experience the transition
- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

Example: Model-Based Learning

Pros and cons

- Pro:
 - Makes efficient use of experiences (low *sample complexity*)
- Con:
 - May not scale to large state spaces
 - Learns model one state-action pair at a time (but this is fixable)
 - Cannot solve MDP for very large |S| (also somewhat fixable)
 - Much harder when the environment is partially observable

Model-Free Learning

- We still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A(s)
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy π(s)

- New twist: don't know T or R, so must try out actions
- Big idea: Compute all averages over T using sample outcomes

Example: Expected Age

Goal: Compute expected age of cs188 students

Without P(A), instead collect samples $[a_1, a_2, ..., a_N]$

Passive vs. Active RL

Passive Reinforcement Learning

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - Goal: learn the state values $V^{\pi}(s)$
- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

Direct Evaluation (Monte Carlo)

- Goal: Estimate $V^{\pi}(s)$, i.e., expected total discounted reward from *s* onwards
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation by Monte Carlo estimation (or direct utility estimation)

Example: Direct Evaluation

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What's bad about it?
 - It ignores information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

 $V_0^{\pi}(s) = 0$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

• We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_{1} = R(s, \pi(s), s_{1}') + \gamma V_{k}^{\pi}(s_{1}')$$

$$sample_{2} = R(s, \pi(s), s_{2}') + \gamma V_{k}^{\pi}(s_{2}')$$

$$\dots$$

$$sample_{n} = R(s, \pi(s), s_{n}') + \gamma V_{k}^{\pi}(s_{n}')$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Temporal Difference (TD) Learning

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$
Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

Exponential Moving Average

- Exponential moving average
 - The running interpolation update: $ar{x}_n = (1-lpha) \cdot ar{x}_{n-1} + lpha \cdot x_n$
 - Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes

 $(s, a, r, s', a', r', s'', a'', r'', s'''' \dots)$

- Update estimates each transition (s, a, r, s')
- Over time, updates will mimic Bellman updates

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal	Technique
Compute V*, Q*, π^*	Value / policy iteration
Evaluate a fixed policy π	Policy evaluation

Unknown MDP: Model-Based

Goal	Technique
Compute V*, Q*, π^*	VI/PI on approx. MDP
Evaluate a fixed policy π	PE on approx. MDP

Unknown MDP: Model-Free

Goal	Technique
Compute V*, Q*, π^*	Q-learning
Evaluate a fixed policy π	Value Learning

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with Q₀(s,a) = 0, which we know is right
 - Given Q_k, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

Idea: learn Q-values, not values

$$\pi(s) = \arg\max_{a} Q(s, a)$$
$$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

Makes action selection model-free too!

Approximating Values through Samples

• Policy Evaluation:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Value Iteration:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

• Q-Value Iteration:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

• Q-Learning: sample-based Q-value iteration

 $Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$

But can't compute this update without knowing T, R

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$

Incorporate the new estimate into a running average:

no longer policy evaluation!

 $Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [sample]$

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -even if samples are generated from a suboptimal policy!
- This is called off-policy learning
- Caveats:

- You have to explore enough (eventually try every state/action pair infinitely often)
- You have to decrease the learning rate appropriately
- Basically, in the limit, it doesn't matter how you select actions (!)

Summary

- RL solves MDPs via direct experience of transitions and rewards
- There are several schemes:
 - Learn the MDP model and solve it
 - Learn V directly from sums of rewards, or by TD local adjustments
 - Still need a model to make decisions by lookahead
 - Learn Q by local Q-learning adjustments, use it directly to pick actions
- Big missing pieces:
 - How to explore without too much regret?
 - How to scale this up to Tetris (10⁶⁰), Go (10¹⁷²), StarCraft (|A|=10²⁶)?

Active RL

Active RL

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values
- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Model-Free Learning

- act according to current optimal (based on Q-Values)
- but also explore...

Exploration vs. Exploitation

Exploration vs exploitation

- *Exploration*: try new things
- **Exploitation**: do what's best given what you've learned so far
- Key point: pure exploitation often gets stuck in a rut and never finds an optimal policy!

Exploration method 1: ε-greedy

- e-greedy exploration
 - Every time step, flip a biased coin
 - With (small) probability ε, act randomly
 - With (large) probability $1-\varepsilon$, act on current policy
- Properties of *ɛ*-greedy exploration
 - Every s,a pair is tried infinitely often
 - Does a lot of stupid things
 - Jumping off a cliff *lots of times* to make sure it hurts
 - Keeps doing stupid things for ever
 - Decay ε towards 0

Video of Demo Q-learning – Manual Exploration – Bridge Grid

Q-learning: Policy

Greedy action selection:

```
\pi(s) = \operatorname*{argmax}_{a} Q(s, a)
```

- *ε*-greedy: greedy most of the times, occasionally take a random action
- Softmax policy: Give a higher probability to the actions that currently have better utility, e.g,

$$\pi(s,a) = \frac{b^{Q(s,a)}}{\sum_{a'} b^{Q(s,a')}}$$

• After learning Q^* , the policy is greedy?

Q-learning Algorithm

```
Initialize Q(s, a) arbitrarily
Repeat (for each episode):
         Initialize s
                                                       e.g., ɛ-greedy, softmax, ...
         Repeat (for each step of episode):
                   Choose a from s using a policy derived from Q
                   Take action a_r, receive reward r_r, observe new state s'
                  Q(s,a) \leftarrow Q(s,a) + \alpha \left[ r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]
                   s \leftarrow s'
         until s is terminal
```

Q-learning convergence

- Q-learning converges to optimal Q-values if
 - Every state is visited infinitely often
 - The policy for action selection becomes greedy as time approaches infinity
 - The step size parameter is chosen appropriately
- Stochastic approximation conditions
 - The learning rate is decreased fast enough but not too fast

Video of Demo Q-Learning Auto Cliff Grid

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Video of Demo Q-Learning -- Crawler

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

Exploration Functions

- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g.

- Regular Q-update:
 - $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a')]$
 - f(u,n) = u + k/n

- Modified Q-update:
 - $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma Q(s',a^e)]$

 $a^e = \operatorname{argmax}_{a'} f(Q(s',a'), N(s',a'))$

- Modified Q-update II:
 - $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} f(Q(s',a'),N(s',a'))]$
 - Note: this propagates the "bonus" back to states that lead to unknown states as well!

Video of Demo Q-learning – Exploration Function – Crawler

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal it requires optimally learning to be optimal
 - Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

Tabular methods: Problem

- All of the introduced methods maintain a table
- Table size can be very large for complex environments
 - Too many states to visit them all in training
 - We may not even visit some states
 - Too many states to hold the q-tables in memory
 - But computation and memory problem

Approximate Q-Learning

Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

Let's say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

Video of Demo Q-Learning Pacman – Tiny – Watch All

Video of Demo Q-Learning Pacman – Tiny – Silent Train

Video of Demo Q-Learning Pacman – Tricky – Watch All

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

 Using a feature representation, we can write a Q function (or value function) for any state using a few weights:

 $V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$ $Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \dots + w_n f_n(s, a)$

- With the wrong features, the best possible approximation may be terrible!
- But in practice we can compress a value function for chess (10⁴³ states) down to about 30 weights and get decent play!!!
- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

(...)

• Q-learning with linear Q-functions:
transition =
$$(s, a, r, s')$$

difference = $\begin{bmatrix} r + \gamma \max_{a'} Q(s', a') \end{bmatrix} - Q(s, a)$
 $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference]
 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$
 $Exact Q's$
Approximate Q's

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares
Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

 $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$

Video of Demo Approximate Q-Learning --Pacman

Q-Learning and Least Squares

Linear Approximation: Regression*

Prediction: $\hat{y} = w_0 + w_1 f_1(x)$ Prediction: $\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$

Optimization: Least Squares*

total error =
$$\sum_{i} (y_i - \hat{y_i})^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i) \right)^2$$

Observation y
Prediction \hat{y}
 $\int_{0}^{0} f_1(x)$

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$
$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = - \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$
$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

"target" "prediction"

Overfitting: Why Limiting Capacity Can Help*

Policy Search

Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

Example from Pieter Abbeel Iteration 0

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal	Technique	
Compute V*, Q*, π^*	Value / policy iteration	
Evaluate a fixed policy π	Policy evaluation	

Unknown MDP: Model-Based

Goal	*use features to generalize	Technique
Compute V*,	Q*, π*	VI/PI on approx. MDP
Evaluate a fixe	ed policy π	PE on approx. MDP

Unknown MDP: Model-Free

Goal	*use features to generalize	Technique
Compu	ite V*, Q*, π*	Q-learning
Evalua	te a fixed policy π	Value Learning

Summary

- Exploration vs. exploitation
 - Exploration guided by unfamiliarity and potential
 - Appropriately designed bonuses tend to minimize regret
- Generalization allows RL to scale up to real problems
 - Represent V or Q with parameterized functions
 - Adjust parameters to reduce sample prediction error

Conclusion

- We're done with Part I: Search and Planning!
- We've seen how AI methods can solve problems in:
 - Search
 - Constraint Satisfaction Problems
 - Games
 - Markov Decision Problems
 - Reinforcement Learning
- Next up: Part II: Reasoning, Uncertainty and Learning!

