
Soleymani

Reinforcement Learning
CE417: Introduction to Artificial Intelligence
Sharif University of Technology
Fall 2023

Slides have been adopted from Klein and Abdeel, CS188, UC Berkeley.

Reinforcement Learning

2

Reinforcement Learning
• Still assume a Markov decision process (MDP):

• A set of states s Î S
• A set of actions (per state) A(s)
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Still looking for a policy p(s)

• New twist: don’t know T or R
• I.e. we don’t know which states are good or what the actions do
• Must actually try actions and states out to learn

3

Reinforcement Learning

• Basic idea:
• Receive feedback in the form of rewards
• Agent’s utility is defined by the reward function
• Must (learn to) act so as to maximize expected rewards
• All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

4

Example: Samuel’s Checker Player (1956-67)

5

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

6

7

Example: Learning to Walk

Initial [Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]

8

Example: Learning to Walk

Training [Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]

9

Finished [Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Example: Sidewinding

10
[Andrew Ng]

The Crawler!

11

Video of Demo Crawler Bot

12

Example: Breakout (DeepMind)

13

[© TwoMinuteLectures]

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

14

RL vs. MDP
• RL isn’t just planning, it is also learning!

• There is an MDP, but you can’t solve it with just computation
• You need to actually act to figure it out

• Important ideas in reinforcement learning that came up
• Exploration: you have to try unknown actions to get information
• Exploitation: eventually, you have to use what you know
• Regret: early on, you inevitably “make mistakes” and lose reward
• Sampling: you may need to repeat many times to get good estimates
• Generalization: what you learn in one state may apply to others too

15

Approaches to Reinforcement Learning

16

• Model-based: Learn the model, solve it, execute the solution

• Learn values from experiences, use to make decisions
• Direct evaluation
• Temporal difference learning
• Q-learning

• Learn policies directly

Model-Based RL

17

Model-Based Learning
• Model-Based Idea:

• Learn an approximate model based on experiences
• Solve for values as if the learned model were correct

• Step 1: Learn empirical MDP model
• Count outcomes s’ for each s, a
• Normalize to give an estimate of
• Discover each when we experience the transition

• Step 2: Solve the learned MDP
• For example, use value iteration, as before

18

Example: Model-Based Learning

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

19

Pros and cons

20

• Pro:
• Makes efficient use of experiences (low sample complexity)

• Con:
• May not scale to large state spaces

• Learns model one state-action pair at a time (but this is fixable)
• Cannot solve MDP for very large |S| (also somewhat fixable)

• Much harder when the environment is partially observable

Model-Free Learning

21

Reinforcement Learning
• We still assume an MDP:

• A set of states s Î S
• A set of actions (per state) A(s)
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Still looking for a policy p(s)

• New twist: don’t know T or R, so must try out actions

• Big idea: Compute all averages over T using sample outcomes

22

Example: Expected Age

Goal: Compute expected age of cs188 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

23

Passive vs. Active RL

24

Passive Reinforcement Learning

25

Passive Reinforcement Learning
• Simplified task: policy evaluation

• Input: a fixed policy p(s)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• Goal: learn the state values 𝑉!(𝑠)

• In this case:
• Learner is “along for the ride”
• No choice about what actions to take
• Just execute the policy and learn from experience
• This is NOT offline planning! You actually take actions in the world.

26

Direct Evaluation (Monte Carlo)
• Goal: Estimate Vp(s), i.e., expected total discounted

reward from s onwards

• Idea: Average together observed sample values
• Act according to p
• Every time you visit a state, write down what the sum of

discounted rewards turned out to be
• Average those samples

• This is called direct evaluation by Monte Carlo
estimation (or direct utility estimation)

27

Example: Direct Evaluation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

28

Problems with Direct Evaluation

• What’s good about direct evaluation?
• It’s easy to understand
• It doesn’t require any knowledge of T, R
• It eventually computes the correct average values,

using just sample transitions

• What’s bad about it?
• It ignores information about state connections
• Each state must be learned separately
• So, it takes a long time to learn

Output Values

If B and E both go to C
under this policy, how can
their values be different?

29

A

B C D

E

+8 +4 +10

-10

-2

Why Not Use Policy Evaluation?
• Simplified Bellman updates calculate V for a fixed policy:

• Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections between the states
• Unfortunately, we need T and R to do it!

• Key question: how can we do this update to V without knowing T and R?
• In other words, how to we take a weighted average without knowing the weights?

p(s)

s

s, p(s)

s, p(s),s’
s’

30

Sample-Based Policy Evaluation?
} We want to improve our estimate of V by computing these averages:

} Idea: Take samples of outcomes s’ (by doing the action!) and average

p(s)
s

s, p(s)

s1's2' s3'
s, p(s),s’

s'

Almost! But we can’t rewind
time to get sample after

sample from state s.

31

Temporal Difference (TD) Learning

32

Temporal Difference Learning
• Big idea: learn from every experience!

• Update V(s) each time we experience a transition (s, a, s’, r)
• Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
• Policy still fixed, still doing evaluation!
• Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

33

Exponential Moving Average
• Exponential moving average

• The running interpolation update:

• Makes recent samples more important:

• Forgets about the past (distant past values were wrong anyway)

• Decreasing learning rate (alpha) can give converging averages

34

Example: Temporal Difference Learning

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

35

Model-Free Learning
• Model-free (temporal difference) learning
• Experience world through episodes

• Update estimates each transition

• Over time, updates will mimic Bellman
updates

r

a
s

s, a

s’
a’

s’, a’

s’’

36

The Story So Far: MDPs and RL
Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

37

Detour: Q-Value Iteration
• Value iteration: find successive (depth-limited) values

• Start with V0(s) = 0, which we know is right
• Given Vk, calculate the depth k+1 values for all states:

• But Q-values are more useful, so compute them instead
• Start with Q0(s,a) = 0, which we know is right
• Given Qk, calculate the depth k+1 q-values for all q-states:

38

Problems with TD Value Learning

• TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

• However, if we want to turn values into a (new) policy, we’re sunk:

• Idea: learn Q-values, not values

• Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

39

Approximating Values through Samples
• Policy Evaluation:

• Value Iteration:

• Q-Value Iteration:

40

Q-Learning

• Q-Learning: sample-based Q-value iteration

• But can’t compute this update without knowing T, R

• Learn Q(s,a) values as you go
• Receive a sample (s,a,s’,r)
• Consider your old estimate:
• Consider your new sample estimate:

• Incorporate the new estimate into a running
average:

no longer
policy evaluation!

41

Video of Demo Q-Learning -- Gridworld

42

Video of Demo Q-Learning -- Crawler

43

Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy --
even if samples are generated from a suboptimal policy!

• This is called off-policy learning

• Caveats:
• You have to explore enough (eventually try every state/action

pair infinitely often)
• You have to decrease the learning rate appropriately
• Basically, in the limit, it doesn’t matter how you select actions (!)

44

Summary

45

• RL solves MDPs via direct experience of transitions and rewards
• There are several schemes:
• Learn the MDP model and solve it
• Learn V directly from sums of rewards, or by TD local adjustments

• Still need a model to make decisions by lookahead
• Learn Q by local Q-learning adjustments, use it directly to pick actions

• Big missing pieces:
• How to explore without too much regret?
• How to scale this up to Tetris (1060), Go (10172), StarCraft (|A|=1026)?

Active RL

46

Active RL
• Full reinforcement learning: optimal policies (like value iteration)

• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• You choose the actions now
• Goal: learn the optimal policy / values

• In this case:
• Learner makes choices!
• Fundamental tradeoff: exploration vs. exploitation
• This is NOT offline planning! You actually take actions in the world and

find out what happens…

47

Model-Free Learning

• act according to current optimal (based on Q-Values)

• but also explore…

48

Exploration vs. Exploitation

49

Exploration vs exploitation

50

• Exploration: try new things
• Exploitation: do what’s best given what you’ve learned so far
• Key point: pure exploitation often gets stuck in a rut and never

finds an optimal policy!

Exploration method 1: e-greedy

51

• e-greedy exploration
• Every time step, flip a biased coin
• With (small) probability e, act randomly
• With (large) probability 1-e, act on current policy

• Properties of e-greedy exploration
• Every s,a pair is tried infinitely often
• Does a lot of stupid things

• Jumping off a cliff lots of times to make sure it hurts
• Keeps doing stupid things for ever

• Decay e towards 0

Video of Demo Q-learning – Manual Exploration
– Bridge Grid

52

Q-learning: Policy

53

• Greedy action selection:

𝜋 𝑠 = argmax
!

𝑄(𝑠, 𝑎)

• 𝜖 -greedy: greedy most of the times, occasionally take a
random action

• Softmax policy: Give a higher probability to the actions that
currently have better utility, e.g,

𝜋 𝑠, 𝑎 =
𝑏%(&,()

∑(! 𝑏%(&,(
!)

• After learning 𝑄∗, the policy is greedy?

Q-learning Algorithm

54

} Initialize 𝑄(𝑠, 𝑎) arbitrarily
} Repeat (for each episode):
} Initialize 𝑠
} Repeat (for each step of episode):
} Choose 𝑎 from 𝑠 using a policy derived from 𝑄
} Take action 𝑎, receive reward 𝑟, observe new state 𝑠!

} 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
"!

𝑄 𝑠!, 𝑎! − 𝑄 𝑠, 𝑎

} 𝑠 ← 𝑠!

} until 𝑠 is terminal

e.g., ε-greedy, softmax, …

Q-learning convergence

55

• Q-learning converges to optimal Q-values if
• Every state is visited infinitely often
• The policy for action selection becomes greedy as time
approaches infinity

• The step size parameter is chosen appropriately

• Stochastic approximation conditions
• The learning rate is decreased fast enough but not too fast

Video of Demo Q-Learning Auto Cliff Grid

56

Video of Demo Q-learning – Epsilon-Greedy –
Crawler

57

Video of Demo Q-Learning -- Crawler

58

Exploration Functions
• When to explore?

• Random actions: explore a fixed amount
• Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

59

Exploration Functions

• Exploration function
• Takes a value estimate 𝑢 and a visit count 𝑛, and

returns an optimistic utility, e.g.

• Regular Q-update:
• 𝑄(𝑠, 𝑎) ¬ (1 − a) × 𝑄(𝑠, 𝑎) + a × [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′)]

• Modified Q-update:
• 𝑄(𝑠, 𝑎)¬ (1 − a) × 𝑄(𝑠, 𝑎) + a × [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 𝑄(𝑠", 𝑎#)]

• Modified Q-update II:
• 𝑄(𝑠, 𝑎)¬ (1 − a) × 𝑄(𝑠, 𝑎) + a × [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max$!𝑓(𝑄(𝑠′, 𝑎′),𝑁(𝑠′, 𝑎′))]
• Note: this propagates the “bonus” back to states that lead to unknown states as

well!

60

𝑎# = argmax$!𝑓(𝑄(𝑠′, 𝑎′),𝑁(𝑠′, 𝑎′))

Video of Demo Q-learning – Exploration
Function – Crawler

61

Regret
• Even if you learn the optimal policy, you still make mistakes along the way!

• Regret is a measure of your total mistake cost: the difference between your
(expected) rewards, including youthful suboptimality, and optimal (expected)
rewards

• Minimizing regret goes beyond learning to be optimal – it requires optimally learning
to be optimal
• Example: random exploration and exploration functions both end up optimal, but random

exploration has higher regret

62

Tabular methods: Problem

63

• All of the introduced methods maintain a table

• Table size can be very large for complex environments
• Too many states to visit them all in training

• We may not even visit some states

• Too many states to hold the q-tables in memory
• But computation and memory problem

Approximate Q-Learning

64

Generalizing Across States
• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly learn
about every single state!
• Too many states to visit them all in training
• Too many states to hold the q-tables in memory

• Instead, we want to generalize:
• Learn about some small number of training states from

experience
• Generalize that experience to new, similar situations
• This is a fundamental idea in machine learning, and we’ll

see it over and over again

65

Example: Pacman

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

66

Video of Demo Q-Learning Pacman – Tiny –
Watch All

67

Video of Demo Q-Learning Pacman – Tiny –
Silent Train

68

Video of Demo Q-Learning Pacman – Tricky –
Watch All

69

Feature-Based Representations

• Solution: describe a state using a vector
of features (properties)
• Features are functions from states to real

numbers (often 0/1) that capture important
properties of the state

• Example features:
• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2
• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

• Can also describe a q-state (s, a) with features
(e.g. action moves closer to food)

70

Linear Value Functions
• Using a feature representation, we can write a Q function (or value

function) for any state using a few weights:

• With the wrong features, the best possible approximation may be terrible!

• But in practice we can compress a value function for chess (1043 states)
down to about 30 weights and get decent play!!!

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but actually be very different in
value!

71

Approximate Q-Learning

• Q-learning with linear Q-functions:

• Intuitive interpretation:
• Adjust weights of active features
• E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

• Formal justification: online least squares

Exact Q’s

Approximate Q’s

72

Example: Q-Pacman

73

Video of Demo Approximate Q-Learning --
Pacman

74

Q-Learning and Least Squares

75

0 200

20

40

0
10

20
30

40

0
10

20
30

20

22

24

26

Linear Approximation: Regression*

Prediction: Prediction:

76

Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation

77

Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

78

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can
Help*

79

Policy Search

80

Policy Search
• Problem: often the feature-based policies that work well (win games,

maximize utilities) aren’t the ones that approximate V / Q best
• Q-learning’s priority: get Q-values close (modeling)
• Action selection priority: get ordering of Q-values right (prediction)
• We’ll see this distinction between modeling and prediction again later in the course

• Solution: learn policies that maximize rewards, not the values that predict
them

• Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by
hill climbing on feature weights

81

Policy Search
• Simplest policy search:
• Start with an initial linear value function or Q-function
• Nudge each feature weight up and down and see if your policy is better

than before

• Problems:
• How do we tell the policy got better?
• Need to run many sample episodes!
• If there are a lot of features, this can be impractical

• Better methods exploit lookahead structure, sample wisely,
change multiple parameters…

82

83

Example from Pieter Abbeel

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free
Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

*use features
to generalize

*use features
to generalize

84

Summary

85

• Exploration vs. exploitation
• Exploration guided by unfamiliarity and potential
• Appropriately designed bonuses tend to minimize regret

• Generalization allows RL to scale up to real problems
• Represent V or Q with parameterized functions
• Adjust parameters to reduce sample prediction error

Conclusion
• We’re done with Part I: Search and

Planning!

• We’ve seen how AI methods can solve
problems in:
• Search
• Constraint Satisfaction Problems
• Games
• Markov Decision Problems
• Reinforcement Learning

• Next up: Part II: Reasoning, Uncertainty and
Learning!

86

