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Generalization



Topics

• Beyond linear models
• Evaluation & model selection
• Regularization
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Recall: Linear regression (squared loss)

• Linear regression functions

𝑔 ∶ ℝ → ℝ 𝑔(𝑥;𝒘) = 𝑤! + 𝑤"𝑥

𝑔:ℝ# → ℝ 𝑔(𝒙;𝒘) = 𝑤! + 𝑤"𝑥"+ . . . 𝑤$𝑥$

• 𝐽(𝒘): Sum of squares error
𝐽 𝒘 =&

!"#

$
𝑦 ! − 𝑔 𝒙 ! ; 𝒘

%

• Weight update rule for 𝑔 𝒙;𝒘 = 𝒘&𝒙:

𝒘'(# = 𝒘' + 𝜂&
!"#

$

𝑦 ! −𝒘'&𝒙 ! 𝒙(!)
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𝒘 = 𝑤!,𝑤",...,𝑤# $ are the 
parameters we need to set.



Beyond linear regression

• How to extend the linear regression to non-linear
functions?
• Transform the data using basis functions
• Learn a linear regression on the new feature vectors (obtained
by basis functions)
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Generalized linear

• Linear combination of fixed non-linear function of the
input vector

𝑔(𝒙;𝒘) = 𝑤0 +𝑤1𝜙1(𝒙)+ . . . 𝑤2𝜙2(𝒙)

{𝜙!(𝒙), . . . , 𝜙"(𝒙)}: set of basis functions (or features)

𝜙# 𝒙 :ℝ$ → ℝ
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Basis functions: examples
• Linear

• Polynomial (univariate)
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Polynomial regression: example
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𝑚 = 1 𝑚 = 3

𝑚 = 5 𝑚 = 7



Classification: Not linearly separable data
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• Non-linear decision surface:Transform to a new feature space

• Quardratic surfaces
• Two dimensional feature space:

• d-dimentional feature space
𝝓 𝒙 = 1, 𝑥", 𝑥%, 𝑥"%, 𝑥%%, 𝑥"𝑥% $

𝝓 𝒙 = 1, 𝑥", … , 𝑥# , 𝑥"%, . . , 𝑥#%, 𝑥"𝑥%, … , 𝑥"𝑥# , 𝑥%𝑥&, … , 𝑥#'"𝑥#
$

𝑥2

𝑥1 𝜙"(𝒙)

𝜙%(𝒙)

𝜙: 𝒙 → 𝝓 𝒙

𝒘$𝝓 𝒙 + 𝑤! = 0



Model complexity and overfitting
• With limited training data, models may achieve zero

training error but a large test error.

• Over-fitting: when the training loss no longer bears any
relation to the test (generalization) loss.
• Fails to generalize to unseen examples.
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1
𝑛7()"

*
𝑦 ( − 𝑓 𝒙 ( ; 𝜽

%
≈ 0Training

(empirical) loss

Expected  
(true) loss

E𝐱,- 𝑦 − 𝑓 𝒙; 𝜽 % ≫ 0



Polynomial regression
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𝑚 = 0 𝑚 = 1

𝑚 = 3 𝑚 = 9

𝑦

𝑦

𝑦

𝑦

[Bishop]



Over-fitting causes
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• Model complexity
• E.g., Model with a large number of parameters (degrees of
freedom)

• Low number of training data
• Small data size compared to the complexity of the model



Model complexity

12

• Example:
• Polynomials with larger 𝑚 are becoming increasingly tuned to
the random noise on the target values.
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𝑚 = 0 𝑚 = 1

𝑚 = 3 𝑚 = 9

𝑦

𝑦

𝑦

𝑦

[Bishop]



Number of training data & overfitting
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} Over-fitting problem becomes less severe as the size of
training data increases.

𝑚 = 9 𝑚 = 9

𝑛 = 15 𝑛 = 100

[Bishop]



Avoiding over-fitting 

14

• Determine a suitable value for model complexity (Model
Selection)
• Simple hold-out method
• Cross-validation

• Regularization (Occam’s Razor)
• Explicit preference towards simple models
• Penalize for the model complexity in the objective function



Avoiding over-fitting 
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• Determine a suitable value for model complexity (Model
Selection)
• Simple hold-out method
• Cross-validation

• Regularization (Occam’s Razor)
• Explicit preference towards simple models
• Penalize for the model complexity in the objective function



Evaluation and model selection
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• Evaluation:
• We need to measure how well the learned function can
predict the target for unseen examples

• Model selection:
• Most of the time we need to select among a set of models
• Example: polynomials with different degree 𝑚

• and thus we need to evaluate these models first



Model selection 
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• Learning algorithm defines the data-driven search over
the hypothesis space
• Optimization of parameters

• Hyper-parameters are the tunable aspects of the
model, that the learning algorithm does not select

This slide has been adopted from CMU ML course:
http://www.cs.cmu.edu/~mgormley/courses/10601-s18/



Model selection 
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• Model selection is the process by which we choose the
“best” model among a set of candidates
• assume access to a function capable of measuring the quality of
a model

• typically done “outside” the main training algorithm

• Model selection / hyper-parameter optimization is just
another form of learning

This slide has been adopted from CMU ML course:
http://www.cs.cmu.edu/~mgormley/courses/10601-s18/



Simple hold-out: model selection

19

• Steps:
• Divide training data into training and validation set 𝑣_𝑠𝑒𝑡
• Use only the training set to train a set of models
• Evaluate each learned model on the validation set
• 𝐽% 𝒘 = "

%_'()
∑*∈%_'() 𝑦(*) − 𝑓 𝒙(*); 𝒘

.

• Choose the best model based on the validation set error



Simple hold-out: model selection
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• Steps:
• Divide training data into training and validation set 𝑣_𝑠𝑒𝑡
• Use only the training set to train a set of models
• Evaluate each learned model on the validation set
• 𝐽% 𝒘 = "

%_'()
∑*∈%_'() 𝑦(*) − 𝑓 𝒙(*); 𝒘

.

• Choose the best model based on the validation set error

• Usually, too wasteful of valuable training data
• Training data may be limited.
• On the other hand, small validation set obtains a relatively
noisy estimate of performance.



Simple hold out:
training, validation, and test sets
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• Simple hold-out chooses the model that minimizes error on
validation set.

• 𝐽A "𝒘 is likely to be an optimistic estimate of generalization
error.
• extra parameter (e.g., degree of polynomial) is fit to this set.

• Estimate generalization error for the test set
• performance of the selected model is finally evaluated on the test set

Training

Validation

Test



Cross-Validation (CV): evaluation
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• 𝑘-fold cross-validation steps:
• Shuffle the dataset and randomly partition training data into 𝑘 groups of

approximately equal size
• for 𝑖 = 1 to 𝑘
• Choose the 𝑖-th group as the held-out validation group
• Train the model on all but the 𝑖-th group of data

• Evaluate the model on the held-out group

…

…

…

…

…

First run

Second run

(k-1)th run

k-th run



Cross-Validation (CV): evaluation
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• 𝑘-fold cross-validation steps:
• Shuffle the dataset and randomly partition training data into 𝑘 groups of

approximately equal size
• for 𝑖 = 1 to 𝑘
• Choose the 𝑖-th group as the held-out validation group
• Train the model on all but the 𝑖-th group of data

• Evaluate the model on the held-out group

• Performance scores of the model from 𝑘 runs are averaged.
• The average error rate as an estimation of the true performance of the model.

…

…

…

…

…

First run

Second run

(k-1)th run

k-th run



Cross-Validation (CV): model selection
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• For each model, we first find the average error by CV.

• The model with the best average performance is
selected.



Cross-validation: polynomial regression example

• 5-fold CV
• 100 runs
• average
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𝑚 = 1
CV: 𝑀𝑆𝐸 = 0.30

𝑚 = 3
CV: 𝑀𝑆𝐸 = 1.45

𝑚 = 5
CV: 𝑀𝑆𝐸 = 45.44

𝑚 = 7
CV: 𝑀𝑆𝐸 = 31759



Avoiding over-fitting 
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• Determine a suitable value for model complexity (Model
Selection)
• Simple hold-out method
• Cross-validation

• Regularization (Occam’s Razor)
• Explicit preference towards simple models
• Penalize for the model complexity in the objective function



Regularization

27

• Adding a penalty term in the cost function to discourage
the coefficients from reaching large values.



Regularization in regression problem 
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• Adding a penalty term in the cost function to discourage
the coefficients from reaching large values.

• Ridge regression (weight decay):

𝐽 𝒘 =/
#%!

&
𝑦 # −𝒘'𝝓 𝒙 #

(
+ 𝜆𝒘'𝒘



Regularization in regression problem

29

• Adding a penalty term in the cost function to discourage
the coefficients from reaching large values.

• Ridge regression (weight decay):

𝐽 𝒘 =/
#%!

&
𝑦 # −𝒘'𝝓 𝒙 #

(
+ 𝜆𝒘'𝒘

• Weight update by gradient descent:

𝒘GHIJ = 𝒘GH − 𝜂𝛻𝑾𝐽(𝑾H)

𝛻𝒘𝐽 𝒘 = −2-
LMJ

N

𝑦 L −𝒘O𝝓 𝒙 L 𝝓 𝒙 L + 2𝜆𝒘



Regularization in classification problem
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• Multi-class logistic regression (i.e., cross entropy loss)
with regularization:

𝐽 𝑾 = −-
;<1

=

-
><1

?

𝑦>
; log 𝑔> 𝒙 ; ;𝑾 + 𝜆-

PMJ

Q

𝒘P
O𝒘P

• Weight Update:

𝒘)
*+! = 𝒘)

* − 𝜂𝛻𝒘+𝐽(𝑾
*)

𝛻𝒘!𝐽 𝑾 = −2-
;<1

=

𝑦 ; − 𝑔>(𝒙 ; ;𝑾) 𝒙 ; + 2𝜆𝒘>



Regression: polynomial order
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• Polynomials with larger 𝑚 are becoming increasingly
tuned to the random noise on the target values.
• magnitude of the coefficients typically gets larger by increasing
𝑚.

[Bishop]



Regression: regularization parameter
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R𝑤"
R𝑤%
R𝑤&
R𝑤.
R𝑤/
R𝑤0
R𝑤1
R𝑤2
R𝑤3

𝑚 = 9

R𝑤!

𝑙𝑛𝜆 = −∞ 𝑙𝑛𝜆 = −18

[Bishop]



Regularization parameter
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• Generalization
• 𝜆 now controls the effective complexity of the model and
hence determines the degree of over-fitting

[Bishop]

Validation



Choosing the regularization parameter 
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• A set of models with different values of 𝜆.

• Find 9𝒘 for each model based on training data

• Find 𝐽-(9𝒘) (or 𝐽.-(9𝒘)) for each model

• 𝐽% 𝒘 = "
/_%

∑*∈%_'() 𝑦(*) − 𝑓 𝑥(*); 𝒘
.

• Select the model with the best 𝐽-(9𝒘) (or 𝐽.-(9𝒘))



The approximation-generalization trade-off
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• Small true error shows good approximation of 𝑓 out of
sample

• More complexℋ ⇒ better chance of approximating 𝑓

• Less complexℋ ⇒ better chance of generalization out of 𝑓



Complexity of hypothesis space: example 
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Pr
ic

e

Size

Pr
ic

e

Size

Pr
ic

e

Size

𝑤! + 𝑤"𝑥 𝑤! + 𝑤"𝑥 + 𝑤%𝑥% 𝑤! + 𝑤"𝑥 + 𝑤%𝑥% + 𝑤&𝑥& + 𝑤.𝑥.

This example has been adapted from: Prof.  Andrew Ng’s slides

More complex ℋLess complex ℋ



Complexity of hypothesis space: example 
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Pr
ic

e

Size

Pr
ic

e

Size

Pr
ic

e

Size

𝑤! + 𝑤"𝑥 𝑤! + 𝑤"𝑥 + 𝑤%𝑥% 𝑤! + 𝑤"𝑥 + 𝑤%𝑥% + 𝑤&𝑥& + 𝑤.𝑥.

This example has been adapted from: Prof.  Andrew Ng’s slides

OverfittingUnderfitting



Complexity of hypothesis space: example 
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degree of polynomial 𝑚

er
ro

r 𝐽4

𝐽567(*

𝐽4 𝒘 =
1
𝑛_𝑣7(∈479_;<5

𝑦(() − 𝑓 𝒙((); 𝒘
%

𝐽567(* 𝒘 =
1

𝑛_𝑡𝑟𝑎𝑖𝑛7(∈567(*_;<5
𝑦(() − 𝑓 𝒙((); 𝒘

%



Complexity of hypothesis space
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• Less complex ℋ:
• 𝐽"#$%&(*𝒘) ≈ 𝐽'(*𝒘) and 𝐽"#$%&(*𝒘) is very high

• More complex ℋ:
• 𝐽"#$%&(*𝒘) ≪ 𝐽'(*𝒘) and 𝐽"#$%&(*𝒘) is low

degree of polynomial 𝑚

er
ro

r

𝐽4(R𝒘)

𝐽567(*(R𝒘)



Size of training set
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𝑓 𝑥;𝒘 = 𝑤! + 𝑤"𝑥 + 𝑤%𝑥%

(training set size)

er
ro

r

𝑛

𝐽4 𝒘 =
1
𝑛_𝑣7(∈479_;<5

𝑦(() − 𝑓 𝑥((); 𝒘
%

𝐽567(* 𝒘 =
1

𝑛_𝑡𝑟𝑎𝑖𝑛7(∈567(*_;<5
𝑦(() − 𝑓 𝑥((); 𝒘

%

𝐽4

𝐽567(*

This slide has been adapted from: Prof. Andrew Ng’s slides



Less complex ℋ
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size

pr
ic

e

size

pr
ic

e

𝑓 𝑥;𝒘 = 𝑤! + 𝑤"𝑥

If model is very simple, getting more
training data will not (by itself) help
much.

(training set size)
𝑛

er
ro

r

𝐽4

𝐽567(*

High 
error

This slide has been adapted from: Prof. Andrew Ng’s slides



More complex ℋ
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(training set size)

er
ro

r

𝑛

𝐽4

𝐽567(*

Gap

size

pr
ic

e

size

pr
ic

e
For more complex models, getting more 
training data is usually helps.

𝑓 𝑥;𝒘 = 𝑤! + 𝑤"𝑥 + ⋯𝑤"!𝑥"!

This slide has been adapted from: Prof. Andrew Ng’s slides



Regularization: example
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𝑓 𝑥;𝒘 = 𝑤! + 𝑤"𝑥 + 𝑤%𝑥% +𝑤& 𝑥& +𝑤. 𝑥.

𝐽 𝒘 =
1
𝑛 7

()"

*
𝑦 ( − 𝑓 𝑥 ( ; 𝒘

%
+ 𝜆𝒘$𝒘

Large 𝜆x
(Prefer to more simple models)

Intermediate 𝜆

Pr
ic

e

Size

Pr
ic

e

Size

Pr
ic

e

Size

Small 𝜆
(Prefer to more complex models)

𝑤" = 𝑤% ≈ 0 𝜆 = 0

This example has been adapted from: Prof.  Andrew Ng’s slides



Model complexity: Bias-variance trade-off
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• Least squares can lead to severe over-fitting if complex models
are trained using data sets of limited size.

• A frequentist viewpoint of the model complexity issue, known
as the bias-variance trade-off.



The learning diagram: deterministic target
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ℎ:𝒳 → 𝒴

𝑓:𝒳 → 𝒴

𝑥 # , 𝑦(#) , … , 𝑥 & , 𝑦(&)
𝑥 # , … , 𝑥 &

[Y.S. Abou Mostafa, 2012]



The learning diagram including noisy target
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• Type equation here.
ℎ:𝒳 → 𝒴

𝑓:𝒳 → 𝒴

𝑥 # , 𝑦(#) , … , 𝑥 & , 𝑦(&)
𝑥 # , … , 𝑥 &

𝑓 𝒙 = ℎ(𝒙)

𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑃(𝑦|𝑥)

Target 
distribution

Distribution 
on features

[Y.S. Abou Mostafa, 2012]



Expectation of true error
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𝐸*/01 𝑓𝒟 𝒙 = 𝔼𝒙,5 𝑓𝒟 𝒙 − 𝑦 (

= 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙 ( + 𝑛𝑜𝑖𝑠𝑒

𝔼𝒟 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙 (

= 𝔼𝒙 𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙 (

We now want to focus on 𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙 (
.

ℎ 𝒙 : minimizes the expected loss

𝒙, 𝑦 ~𝑃



The average hypothesis
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̅𝑓 𝒙 ≡ 𝐸𝒟 𝑓𝒟 𝒙

̅𝑓 𝒙 ≈
1
𝐾
-
PMJ

Q

𝑓𝒟 ! 𝒙

𝐾 training sets (of size 𝑁) sampled from 
𝑃(𝒙, 𝑦): 𝒟("), 𝒟(.), … , 𝒟(0)



Using the average hypothesis
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𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙 (

= 𝔼𝒟 𝑓𝒟 𝒙 − ̅𝑓 𝒙 + ̅𝑓 𝒙 − ℎ 𝒙
(



Using the average hypothesis
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𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙 (

= 𝔼𝒟 𝑓𝒟 𝒙 − ̅𝑓 𝒙 + ̅𝑓 𝒙 − ℎ 𝒙
(

= 𝔼𝒟 R

S

𝑓𝒟 𝒙 − ̅𝑓 𝒙
(
+ ̅𝑓 𝒙 − ℎ 𝒙

(

+ 2 𝑓𝒟 𝒙 − ̅𝑓 𝒙 ̅𝑓 𝒙 − ℎ 𝒙



Using the average hypothesis
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𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙 (

= 𝔼𝒟 𝑓𝒟 𝒙 − ̅𝑓 𝒙 + ̅𝑓 𝒙 − ℎ 𝒙
(

= 𝔼𝒟 R

S

𝑓𝒟 𝒙 − ̅𝑓 𝒙
(
+ ̅𝑓 𝒙 − ℎ 𝒙

(

+ 2 𝑓𝒟 𝒙 − ̅𝑓 𝒙 ̅𝑓 𝒙 − ℎ 𝒙

= 𝔼𝒟 𝑓𝒟 𝒙 − ̅𝑓 𝒙
(
+ ̅𝑓 𝒙 − ℎ 𝒙

(



Bias and variance
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𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙 % = 𝔼𝒟 𝑓𝒟 𝒙 − ̅𝑓 𝒙
%
+ ̅𝑓 𝒙 − ℎ 𝒙

%

𝔼𝒙 𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙 d = 𝔼𝒙 var 𝒙 + bias(𝒙)

= var + bias

var(𝒙) bias(𝒙)



Bias-variance trade-off
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var = 𝔼𝒙 𝔼𝒟 𝑓𝒟 𝒙 − ̅𝑓 𝒙
d

bias = 𝔼𝒙 ̅𝑓 𝒙 − ℎ 𝒙

More complex ℋ ⇒ lower bias but higher variance 

ℎ
ℎ

[Y.S. Abou Mostafa, 2012]



Example I: sin target
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• Only two training example 𝑁 = 2

• Two models used for learning:
• ℋ(: 𝑓 𝑥 = 𝑏
• ℋ): 𝑓 𝑥 = 𝑎𝑥 + 𝑏

• Which is better ℋ6 or ℋ!?

[Y.S. Abou Mostafa, 2012]



Example I: learning from a training set
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ℋ! ℋ"

[Y.S. Abou Mostafa, 2012]



Example I: variance ℋ7
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̅𝑓(𝑥)

[Y.S. Abou Mostafa, et. al]



Example I: variance ℋ8
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̅𝑓(𝑥)

[Y.S. Abou Mostafa, et. al]



Example I: which is better?
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̅𝑓(𝑥)
̅𝑓(𝑥)

[Y.S. Abou Mostafa, 2012]



Lesson

59

Match themodel complexity
to the data sources
not to the complexity of the target function.



Example I: regularization

60[Y.S. Abou Mostafa, 2012]



Example II: regularization & bias-variance
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̅𝑓(𝑥)̅𝑓(𝑥)

[Y.S. Abou Mostafa, 2012]



Winner of ℋ", ℋ#, and ℋ# with regularization  

62

[Y.S. Abou Mostafa, 2012]

̅𝑓(𝑥)

̅𝑓(𝑥)

ℋ"

̅𝑓(𝑥)



Example II: regularization & bias/variance
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𝐿 = 100 data sets
𝑁 = 25
𝑚 = 25

𝜆 is 
large

𝜆 is 
intermediate

𝜆 is 
small

[Bishop]

v

v



Example II: Learning curves of bias, 
variance, and noise

64

[Bishop]



Summary
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• Generalized models

• Overfitting problem & how to avoid it
• Evaluation and model selection
• Regularization

• Bias-variance trade-off in regression problem



Leave-One-Out Cross Validation (LOOCV)
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• When data is particularly scarce, cross-validation with 𝑘
= 𝑁
• Leave-one-out treats each training sample in turn as a test
example and all other samples as the training set.

• Use for small datasets
• When training data is valuable
• LOOCV can be time expensive as 𝑁 training steps are
required.



Best unrestricted regression function
• If we know the joint distribution 𝑃(𝒙, 𝑦) and no

constraints on the regression function?
• cost function: mean squared error

ℎ∗ = argmin
8:ℝ9→ℝ

𝔼𝒙,5 𝑦 − ℎ 𝒙 (

ℎ∗ 𝒙 = 𝔼5|𝒙[𝑦]

67



Best unrestricted regression function: Proof

𝔼𝒙,3 𝑦 − ℎ 𝒙
.
=J 𝑦 − ℎ 𝒙

.
𝑝 𝒙, 𝑦 𝑑𝒙𝑑𝑦
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Best unrestricted regression function: Proof

𝔼𝒙,3 𝑦 − ℎ 𝒙
.
=J 𝑦 − ℎ 𝒙

.
𝑝 𝒙, 𝑦 𝑑𝒙𝑑𝑦

• For each 𝒙 , separately minimize loss since ℎ(𝒙) can be chosen
independently for each different 𝒙:

𝛿𝔼𝒙,3 𝑦 − ℎ 𝒙 .

𝛿ℎ(𝒙)
= −N2 𝑦 − ℎ 𝒙 𝑝 𝒙, 𝑦 𝑑𝑦 = 0
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Best unrestricted regression function: Proof

𝔼𝒙,: 𝑦 − ℎ 𝒙 % =2 𝑦 − ℎ 𝒙 %𝑝 𝒙, 𝑦 𝑑𝒙𝑑𝑦

• For each 𝒙, separately minimize loss since ℎ(𝒙) can be chosen
independently for each different 𝒙:

𝛿𝔼𝒙,: 𝑦 − ℎ 𝒙 %

𝛿ℎ(𝒙) = −72 𝑦 − ℎ 𝒙 𝑝 𝒙, 𝑦 𝑑𝑦 = 0

⇒ ℎ 𝒙 =
∫𝑦𝑝 𝒙, 𝑦 𝑑𝑦
∫𝑝 𝒙, 𝑦 𝑑𝑦

=
∫𝑦𝑝 𝒙, 𝑦 𝑑𝑦

𝑝 𝒙
= 7𝑦𝑝 𝑦|𝒙 𝑑𝑦 = 𝔼:|𝒙 𝑦
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Best unrestricted regression function: Proof

𝔼𝒙,: 𝑦 − ℎ 𝒙 % =2 𝑦 − ℎ 𝒙 %𝑝 𝒙, 𝑦 𝑑𝒙𝑑𝑦

• For each 𝒙, separately minimize loss since ℎ(𝒙) can be chosen
independently for each different 𝒙:

𝛿𝔼𝒙,: 𝑦 − ℎ 𝒙 %

𝛿ℎ(𝒙) = −72 𝑦 − ℎ 𝒙 𝑝 𝒙, 𝑦 𝑑𝑦 = 0

⇒ ℎ 𝒙 =
∫𝑦𝑝 𝒙, 𝑦 𝑑𝑦
∫𝑝 𝒙, 𝑦 𝑑𝑦

=
∫𝑦𝑝 𝒙, 𝑦 𝑑𝑦

𝑝 𝒙
= 7𝑦𝑝 𝑦|𝒙 𝑑𝑦 = 𝔼:|𝒙 𝑦

⟹ ℎ∗ 𝒙 = 𝔼:|𝒙[𝑦]
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Error decomposition

72

𝐸Hopq 𝑓𝒟 𝒙 = 𝔼𝒙,r 𝑓𝒟 𝒙 − 𝑦 d

ℎ 𝒙 : minimizes the expected loss

𝒙, 𝑦 ~𝑃

Expected loss



Error decomposition

73

𝐸Hopq 𝑓𝒟 𝒙 = 𝔼𝒙,r 𝑓𝒟 𝒙 − 𝑦 d

= 𝔼𝒙,r 𝑓𝒟 𝒙 − ℎ 𝒙 + ℎ 𝒙 − 𝑦 d

ℎ 𝒙 : minimizes the expected loss

𝒙, 𝑦 ~𝑃

Expected loss



Error decomposition

74

𝐸Hopq 𝑓𝒟 𝒙 = 𝔼𝒙,r 𝑓𝒟 𝒙 − 𝑦 d

= 𝔼𝒙,r 𝑓𝒟 𝒙 − ℎ 𝒙 + ℎ 𝒙 − 𝑦 d

= 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙 d + 𝔼𝒙,r ℎ 𝒙 − 𝒚 d

+2𝔼𝒙,r 𝑓𝒟 𝒙 − ℎ 𝒙 ℎ 𝒙 − 𝑦

ℎ 𝒙 : minimizes the expected loss

𝒙, 𝑦 ~𝑃

Expected loss



Error decomposition

75

𝐸Hopq 𝑓𝒟 𝒙 = 𝔼𝒙,r 𝑓𝒟 𝒙 − 𝑦 d

= 𝔼𝒙,r 𝑓𝒟 𝒙 − ℎ 𝒙 + ℎ 𝒙 − 𝑦 d

= 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙 d + 𝔼𝒙,r ℎ 𝒙 − 𝒚 d

+2𝔼𝒙,r 𝑓𝒟 𝒙 − ℎ 𝒙 ℎ 𝒙 − 𝑦

ℎ 𝒙 : minimizes the expected loss

𝒙, 𝑦 ~𝑃

𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙 𝔼r|𝒙 ℎ 𝒙 − 𝑦

Expected loss



Error decomposition

76

𝐸Hopq 𝑓𝒟 𝒙 = 𝔼𝒙,r 𝑓𝒟 𝒙 − 𝑦 d

= 𝔼𝒙,r 𝑓𝒟 𝒙 − ℎ 𝒙 + ℎ 𝒙 − 𝑦 d

= 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙 d + 𝔼𝒙,r ℎ 𝒙 − 𝒚 d

+2𝔼𝒙,r 𝑓𝒟 𝒙 − ℎ 𝒙 ℎ 𝒙 − 𝑦

ℎ 𝒙 : minimizes the expected loss

𝒙, 𝑦 ~𝑃

𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙 𝔼r|𝒙 ℎ 𝒙 − 𝑦

0

Expected loss



Error decomposition
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𝐸*/01 𝑓𝒟 𝒙 = 𝔼𝒙,5 𝑓𝒟 𝒙 − 𝑦 (

= 𝔼𝒙,5 𝑓𝒟 𝒙 − ℎ 𝒙 + ℎ 𝒙 − 𝑦 (

= 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙 ( + 𝔼𝒙,5 ℎ 𝒙 − 𝒚 (

+2𝐸𝒙,5 𝑓 𝒙; 9𝒘 − ℎ 𝒙 ℎ 𝒙 − 𝑦

• Noise shows the irreducible minimum value of the loss 
function

0

ℎ 𝒙 : minimizes the expected loss

𝒙, 𝑦 ~𝑃

noise



Expectation of true error
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𝐸*/01 𝑓𝒟 𝒙 = 𝔼𝒙,5 𝑓𝒟 𝒙 − 𝑦 (

= 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙 ( + 𝑛𝑜𝑖𝑠𝑒



Expectation of true error

79

𝐸*/01 𝑓𝒟 𝒙 = 𝔼𝒙,5 𝑓𝒟 𝒙 − 𝑦 (

= 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙 ( + 𝑛𝑜𝑖𝑠𝑒

𝔼𝒟 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙 (

= 𝔼𝒙 𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙 (

We now want to focus on 𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙 (
.



The average hypothesis

80

̅𝑓 𝒙 ≡ 𝐸𝒟 𝑓𝒟 𝒙

̅𝑓 𝒙 ≈
1
𝐾
-
PMJ

Q

𝑓𝒟 ! 𝒙

𝐾 training sets (of size 𝑁) sampled from 
𝑃(𝒙, 𝑦): 𝒟("), 𝒟(.), … , 𝒟(0)



Using the average hypothesis

81

𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙 (

= 𝔼𝒟 𝑓𝒟 𝒙 − ̅𝑓 𝒙 + ̅𝑓 𝒙 − ℎ 𝒙
(



Using the average hypothesis

82

𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙 (

= 𝔼𝒟 𝑓𝒟 𝒙 − ̅𝑓 𝒙 + ̅𝑓 𝒙 − ℎ 𝒙
(

= 𝔼𝒟 R

S

𝑓𝒟 𝒙 − ̅𝑓 𝒙
(
+ ̅𝑓 𝒙 − ℎ 𝒙

(

+ 2 𝑓𝒟 𝒙 − ̅𝑓 𝒙 ̅𝑓 𝒙 − ℎ 𝒙



Using the average hypothesis
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𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙 (

= 𝔼𝒟 𝑓𝒟 𝒙 − ̅𝑓 𝒙 + ̅𝑓 𝒙 − ℎ 𝒙
(

= 𝔼𝒟 R

S

𝑓𝒟 𝒙 − ̅𝑓 𝒙
(
+ ̅𝑓 𝒙 − ℎ 𝒙

(

+ 2 𝑓𝒟 𝒙 − ̅𝑓 𝒙 ̅𝑓 𝒙 − ℎ 𝒙

= 𝔼𝒟 𝑓𝒟 𝒙 − ̅𝑓 𝒙
(
+ ̅𝑓 𝒙 − ℎ 𝒙

(



Bias and variance

84

𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙 % = 𝔼𝒟 𝑓𝒟 𝒙 − ̅𝑓 𝒙
%
+ ̅𝑓 𝒙 − ℎ 𝒙

%

𝔼𝒙 𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙 d = 𝔼𝒙 var 𝒙 + bias(𝒙)

= var + bias

var(𝒙) bias(𝒙)


