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Topics

* Beyond linear models
* Evaluation & model selection

* Regularization



Recall: Linear regression (squared loss)

. . . — T
° Linear regression functions w = [wo,wy,...wq]" are the
parameter‘s we need to set.
g:R->R g(x;w) = wy+wix

g:RY> R gx;w) =wy+wix; +...wgxg

° J(w):Sum of squares error

J(w) = 2?_1 (y(i) _ g(x(i); W))z

* Weight update rule for g(x; w) = wlx:

n
witl = wt 4 p 2 (ya) _ Wth(i)) x®
-

l



Beyond linear regression

* How to extend the linear regression to non-linear
functions?
Transform the data using basis functions

Learn a linear regression on the new feature vectors (obtained
by basis functions)



Generalized linear

°* Linear combination of fixed non-linear function of the
input vector

g;w) =wy +wid(X)+ ... Wy (X)

{d1(x),...,dm(x)}: set of basis functions (or features)

d;(x):RY > R



Basis functions: examples

* Linear

If m=d, ¢0;(x) =x;,1=1,...,d, then
f(xiw) = wo + wixr1 + ... + wary
* Polynomial (univariate)

If o;(x) = 2!, i=1.....m, then

. o A, o m—1 N 21
flr:w) = wo 4+ wix + ... + Wy, 1@ + Wy



Polynomial regression: example




Classification: Not linearly separable data

* Non-linear decision surface: Transform to a new feature space

T ®) ¢2(x)]
X2 O O O O
®) O
X o ¢:x-¢x)
X X O —
X X @)
X O
x X .
O X wolx)+w,=0
/ > >
X1 ¢1(x)

® Quardratic surfaces

* Two dimensional feature space:

¢(x) — [1r xl)x2;x12;x221x1x2]T
* d-dimentional feature space

T
d(x) = [1,xq, e, X, XF, .., X3, X1 %5, 0o, X1 X g, X3 X3, o, Xg_1%Xq |



Model complexity and overfitting

* With limited training data, models may achieve zero
training error but a large test error.

o 1 —n _ _ 2
Training EE 1 (y(‘) — f (x(l); 9)) ~ 0
=

(empirical) loss

(Iiff:)cfsi Exy {(3’ — f(x; 9))2} > 0

* Overfitting: when the training loss no longer bears any
relation to the test (generalization) loss.

Fails to generalize to unseen examples.



Polynomial regression
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Over-fitting causes

* Model complexity

E.g., Model with a large number of parameters (degrees of
freedom)

* Low number of training data
Small data size compared to the complexity of the model
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Model complexity

* Example:

Polynomials with larger m are becoming increasingly tuned to
the random noise on the target values.
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Number of training data & overfitting

» Over-fitting problem becomes less severe as the size of
training data increases.

[Bishop]
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Avoiding over-fitting
* Determine a suitable value for model complexity (Model

Selection)

Simple hold-out method
Cross-validation

* Regularization (Occam’s Razor)

Explicit preference towards simple models
Penalize for the model complexity in the objective function

14



Avoiding over-fitting
* Determine a suitable value for model complexity (Model

Selection)

Simple hold-out method
Cross-validation

* Regularization (Occam’s Razor)

Explicit preference towards simple models
Penalize for the model complexity in the objective function
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Evaluation and model selection

°* Evaluation:

We need to measure how well the learned function can
predict the target for unseen examples

* Model selection:

Most of the time we need to select among a set of models

Example: polynomials with different degree m

and thus we need to evaluate these models first

16



Model selection

* Learning algorithm defines the data-driven search over
the hypothesis space

Optimization of parameters

°* Hyper-parameters are the tunable aspects of the
model, that the learning algorithm does not select

This slide has been adopted from CMU ML course: 17
http://www.cs.cmu.edu/~mgormley/courses/10601-s 18/



Model selection

* Model selection is the process by which we choose the
“best” model among a set of candidates

assume access to a function capable of measuring the quality of
a model

typically done “outside” the main training algorithm

* Model selection / hyper-parameter optimization is just
another form of learning

This slide has been adopted from CMU ML course: 18
http://www.cs.cmu.edu/~mgormley/courses/10601-s 18/



Simple hold-out: model selection

* Steps:
Divide training data into training and validation set v_set

Use only the training set to train a set of models

Evaluate each learned model on the validation set

Jy(w) = #Ziewset (y(i) —f (x(i); W))Z

|lv_set]|

Choose the best model based on the validation set error

19



Simple hold-out: model selection

* Steps:
Divide training data into training and validation set v_set

Use only the training set to train a set of models

Evaluate each learned model on the validation set

Jy(w) = LZiEU_set (y(i) —f (x(i); W))Z

|lv_set]|

Choose the best model based on the validation set error

* Usually, too wasteful of valuable training data
Training data may be limited.

On the other hand, small validation set obtains a relatively
noisy estimate of performance.
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Simple hold out:
training, validation, and test sets

* Simple hold-out chooses the model that minimizes error on
validation set.

° J,(w) is likely to be an optimistic estimate of generalization
error.

extra parameter (e.g., degree of polynomial) is fit to this set.

* Estimate generalization error for the test set

performance of the selected model is finally evaluated on the test set

Training

Validation

21
Test




Cross-Validation (CV): evaluation

* k-fold cross-validation steps:
Shuffle the dataset and randomly partition training data into k groups of
approximately equal size
fori=1tok
Choose the i-th group as the held-out validation group
Train the model on all but the i-th group of data

Evaluate the model on the held-out group

First run

Second run

(k-1)th run

k-th run 22




Cross-Validation (CV): evaluation

* k-fold cross-validation steps:
Shuffle the dataset and randomly partition training data into k groups of
approximately equal size

fori=1tok
Choose the i-th group as the held-out validation group
Train the model on all but the i-th group of data
Evaluate the model on the held-out group
Performance scores of the model from k runs are averaged.

The average error rate as an estimation of the true performance of the model.

First run

Second run

(k-1)th run

k-th run 23




Cross-Validation (CV): model selection

* For each model, we first find the average error by CV.

°* The model with the best average performance is
selected.

24



Cross-validation: polynomial regression example

* 5-fold CV |
* 100 runs
average

051

25

m=1
CV: MSE = 0.30

m=2>5
CV: MSE = 45.44

m=3
CV: MSE = 1.45

CV: MSE = 31759




Avoiding over-fitting
* Determine a suitable value for model complexity (Model

Selection)

Simple hold-out method
Cross-validation

* Regularization (Occam’s Razor)

Explicit preference towards simple models
Penalize for the model complexity in the objective function
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Regularization

* Adding a penalty term in the cost function to discourage
the coefficients from reaching large values.
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Regularization in regression problem
* Adding a penalty term in the cost function to discourage

the coefficients from reaching large values.

* Ridge regression (weight decay):

Jw) = zn (y(i) — qub(x(i)))z + AwTw
i=1

28



Regularization in regression problem

* Adding a penalty term in the cost function to discourage
the coefficients from reaching large values.

* Ridge regression (weight decay):
n : ) 2
J(w) = z (y(l) — qub(x(l))) + w'w
i=1
* Weight update by gradient descent:
witt = wj — V] (W)

7,Jw) = =2 z (y(i) — qub(x(i))) d(xD) + 22w
i=1

29



Regularization in classification problem

* Multi-class logistic regression (i.e., cross entropy loss)
with regularization:

JW) = z z y,E )log g (x®; W)) + Az wiw,

=1 k=
* Weight Update:

W;(+1 — W;c o ank](Wt)

Go ] (W) = —2 Z(y“) — gk xO; W))x® + 22w,

30



Regression: polynomial order

* Polynomials with larger m are becoming increasingly
tuned to the random noise on the target values.

magnitude of the coefficients typically gets larger by increasing

m.

M=0 M=1 M=6 M=9
w) 0.19 0.82 0.31 0.35
w -1.27 7.99 232.37
w3 -25.43 -5321.83
w3 17.37 48568.31
wj -231639.30
w? 640042.26
wg -1061800.52
w? 1042400.18
wg -557682.99
wy 125201.43

[Bishop]
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[Bishop]

Regression: regularization parameter
m=9

InA=—-o> InA=-18 InA=0
W 0.35 0.35 0.13
Wy 232.37 4.74 -0.05
W, -5321.83 -0.77 -0.06
W3 48568.31 -31.97 -0.05
W, -231639.30 -3.89 -0.03
We 640042.26 55.28 -0.02
w, | -1061800.52 41.32 -0.01
A 1042400.18 -45.95 -0.00
WSA -557682.99 -91.53 0.00
ng 125201.43 72.68 0.01

1} Inl = —oo - i} InA =—-18 |

32



Regularization parameter

* Generalization

A now controls the effective complexity of the model and
hence determines the degree of over-fitting

Training
—Validation
w2
Z 0.5 -
&9 /
O / 1 1 1
-35 -30 =25 =20

In A

[Bishop] >



Choosing the regularization parameter

* A set of models with different values of A.

* Find w for each model based on training data

* Find J,(W) (or J.,(W)) for each model
. . 2
JoW) = 25 Binser (v = £ (2 w))

* Select the model with the best J,(W) (or J.,(W))

34



The approximation-generalization trade-off

® Small true error shows good approximation of f out of
sample

* More complex H = better chance of approximating f

* Less complex H{ = better chance of generalization out of f

35



Complexity of hypothesis space: example

Price

X X
X X
X X
()]
k)
[ .
(a1
X X
X X
Size Size
Wo + WX Wo + wix + wyx?

Less complex H

This example has been adapted from:

Price

Size

Wy + Wi X + szz + W3x3 + W4_x4

More complex H

Prof. Andrew Ng’s slides 36



Complexity of hypothesis space: example

Price

X
X
X
()
9
| S
o
X
T x X
Size Size
Wo + WX Wo + wix + wyx?
Underfitting

This example has been adapted from:

Price

\

Wy + Wi X + szz + W3x3 + Wy X

Size
4

Overfitting

Prof. Andrew Ng’s slides 37



Complexity of hypothesis space: example

Price

Size

1 ; ; 2
_ (i) . )
w) = — —f(x";w
]V( ) n_uv i€val_set (y f ( ) ,
1 . .
. _ @ _ @), )
Jerain(W) n train Zietrain_set (y f (x ) W)
A
§ ]v
o)

] train

N

7

degre% of polynomial m

Price

N

Size

38



Complexity of hypothesis space

* Less complex H:
Jtrain(W) = J,(W) and Jirqin (W) is very high

* More complex H:
Jtrain(W) < J,(W) and Jirqin (W) is low

N ]‘U (W)

error

] train (W)

~

7

degree of polynomial m

39



Size of training set

Jow) = — (O (O] SO o b

n_v ieval_set

]train(w) — : : z (y(i) - f(x(i);w))z
n_train i€Etrain_set

A
I

/F A

error

-
[

| | 7

.

This slide has been adapted from: Prof. Andrew Ng’s slides 40
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Ll

(training set size)
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Less complex H

~ A
£
o )
9
a
Jv
High - Too—o
error
]train
A size
(training set size)
n Q
9
| &
If model is very simple, getting more
training data will not (by itself) help
much.
x N

This slide has been adapted from: Prof. Andrew Ng’s slides sizé’



f(x, W) = Wy + wix + '”Wloxlo

More complex H

0\
~ A
2
o
() ()
O
=
o
Jv
Gap
/jtrain .
A Size
(training set size)
n ]
=
o
For more complex models, getting more ®
training data is usually helps.

size
This slide has been adapted from: Prof. Andrew Ng’s slides 42



Regularization: example

flow) =wy +wix +wyx? +ws x3 +w, x*

Jw) = %(211 (y(i) — f(x(i); W))2 + )].WTW)

X
X
X
()] (] Q
) 9 4
LS LS L S
(a8 o (a1
X X
% N
Size Size Size
Large A Intermediate A Small 1
(Prefer to more simple models) (Prefer to more complex models)
wy=w, =0 A=0

This example has been adapted from: Prof. Andrew Ng’s slides 43



Model complexity: Bias-variance trade-off

* Least squares can lead to severe over-fitting if complex models
are trained using data sets of limited size.

* A frequentist viewpoint of the model complexity issue, known
as the bias-variance trade-off.

44



The learning diagram: deterministic target

TRAINING EXAMPLES
(x @,y M), .., (x®, y ™)

HYPOTHESIS SET
af

UNKNOWN TARGET FUNCTION PROBABILITY
DISTRIBUTION
h: X ->Y
P on ./\

= x@, . x®)

FINAL
HYPOTHESIS
fix -y

[Y.S.Abou Mostafa, 2012]
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The learning diagram including noisy target

* Type

UNKNOWN TARGET DISTRIBUTION PROBABILITY
Py | X) DISTRIBUTION
target function h: X’ - Y plus noise
P on X
TRAINING EXAMPLEs [~ *-x™
(x@,yM), .., (x@™, y™)
:,\ f(x) = h(x)
N LEARNING PEAL
— HYPOTHESIS
_ ALGORITHM XY

HYPOTHESIS SET
H

P(x,y) = P(x)P(y|x)
AW

Distribution Target
on features distribution

[Y.S.Abou Mostafa, 2012] 46



(x, y)~P
EXpeCtathn Of frue error h®) : minimizes the expected loss

Etrue(fl)(x )) = Ex,y[(fl)(x) — y)z]
= E, | (fo(x) — h(x))"| + noise

En |Ex [ (f2 () — h() ]|
- E, [IE@ [(f@ (x) - h(x))zu

We now want to focus on [E; [(f@ (x) — h(x))zl.

47



The average hypothesis

f(x) = Eplfp(x)]

K
_ 1
O ~% ) fpu@®
k=1

K training sets (of size N) sampled from
P(x,y): DM, D@ . D&

48



Using the average hypothesis
Ep |(fo(x) = h(2))’|
=B [(fo00) = FG) + F) = k@) |

49



Using the average hypothesis
Ep |(fo(x) = h(2))’|
=B [(fo00) = FG) + F) = k@) |

=E, (fD(x) —-fx ))2 t (f(x) - h(x))z

+2(fol0) - F00) () - )

50



Using the average hypothesis
Ep |(fo(x) = h(2))’|
=B [(fo00) = FG) + F) = k@) |

=E, (fD(x) —-fx ))2 t (f(x) - h(x))z

+2(fo00) = ) (f) = h))

=E, [(fp(x) —-fx ))2] + (f(x) - h(x))z

51



Bias and variance

B [(f>00) = k)] = o | (fo00) = 7G0)) | + (7o) = ho)
= ~ / - ~
var(x) bias(x)

E, [IED (o) - h(x))2” — E,[var(x) + bias(x) ]

= var + bias

52



Bias-variance trade-oft

var = E, [IED (o) - fx ))2”

bias = E,|f(x) — h(x)]

H [ e-4"T bias

More complex H = lower bias but higher variance

[Y.S.Abou Mostafa, 2012] 53



Example I: sin target

* Only two training example N = 2

* Two models used for learning:
:]'[O:f(x) — b
}[1:f(x)=ax+b

°* Which is better H or H;!?

[Y.S.Abou Mostafa, 2012] 54



Example I: learning from a training set

}[0 7-[1

| 1 | | 1 | 1 1 |
2T o8 6 4 02 0 02 o4 05 o8 i .08 06 04 02 0 02 04 06 08 1

[Y.S.Abou Mostafa, 2012] 55



Example I: variance H,

sin(x)

[Y.S.Abou Mostafa, et. al]
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Example I: variance H;

sin(x)

f(x)

[Y.S.Abou Mostafa, et. al]
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Example I: which is better?

Ho Hi

B f(x)

sin(x) sin(z)

bias = 0.50 var = 0.25 bias =0 21 var = 1.69

[Y.S.Abou Mostafa, 2012] 58



LLesson

Match the model complexity
to the data sources

not to the complexity of the target function.

59



10N

t

1Za

regular

xample I:

T\
o)

X

X

with regularization

without regularization

60

[Y.S.Abou Mostafa, 2012]



Example II: regularization & bias-variance

without regularization with regularization
_ e
A 1 @
sin(7zx) sin(7x)
€Z T
bias = 0.21 var = 1.69 bias = 0.23 var = 0.33

[Y.S.Abou Mostafa, 2012] 61



Winner of H,, H;, and H; with regularization

Ho H H; with regularization
_ F(x)
sin(z) sin(z) sin(7x)
€Ir €T T
bias = 0.50 var = 0.25 bias = 0.21 var = 1.69 bias = 0.23 var = 0.33

[Y.S.Abou Mostafa, 2012]



Example II: regularization & bias/variance
Ais 0 al
large
. ; L = 100 data sets : —
| | N =25 |
tl' m = 25 tl'
Ais 17 |
intermediate
Ais t tO_
small ’l
; — [Bishop] ; —;



Example II: Learning curves of bias,
variance, and noise

0.15

(bias)2

variance

.2 :
(bias)” + variance
test error

OLL2.¢

0.09 1

0.06 |

0.03 1




Summary

* Generalized models

* Opverfitting problem & how to avoid it
Evaluation and model selection

Regularization

* Bias-variance trade-off in regression problem

65



Leave-One-Out Cross Validation (LOOCV)

°* When data is particularly scarce, cross-validation with k
=N
Leave-one-out treats each training sample in turn as a test
example and all other samples as the training set.

* Use for small datasets

When training data is valuable

LOOCV can be time expensive as N training steps are
required.

66



Best unrestricted regression function

°If we know the joint distribution P(x,y) and no
constraints on the regression function!?

cost function: mean squared error

h* = argmin E, ,, [(y - h(x))2]
h:RI>R

h*(x) = ]Ey|x[y]

67



Best unrestricted regression function: Proof

Eyy [(y - h(x))zl = f f (v — h(x)) “p(x, y)dxdy

68



Best unrestricted regression function: Proof

Exy [(y - h(x))zl = J f (v — h(0) “p(x, y)dxdy

° For each x, separately minimize loss since h(x) can be chosen
independently for each different x:

5[Ex,y [(y — h(x))2]
oh(x)

= — f 2(y — h(x))p(x,y)dy = 0

69



Best unrestricted regression function: Proof

By [(v = h00)*] = [[ (v = h0)*pxy)dxay

° For each x, separately minimize loss since h(x) can be chosen
independently for each different x:

SEy, |(y — h(0)”
: [6h(x) | - J 2(y = h(0)p(x,y)dy = 0

Jyp(x,y)dy [ yp(x,y)dy

= hx) = Jp(x,y)dy  pkx)

= jyp(ylx)dy = Ey1x [y]

70



Best unrestricted regression function: Proof

By [(v = h00)*] = [[ (v = h0)*pxy)dxay

° For each x, separately minimize loss since h(x) can be chosen
independently for each different x:

SEy, |(y — h(0)”
: [6h(x) | - J 2(y = h(0)p(x,y)dy = 0

Jyp(x,y)dy [ yp(x,y)dy

= hx) = Jp(x,y)dy  pkx)

= jyp(ylx)dy = Ey1x [y]

= h*(x) = [Ey|x[y]
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(x,y)~P
:EI'I'OI’ decompOSitiOn h(x) : minimizes the expected loss

Etrue (fl) (x )) = [Ex,y[(fD (x) — }’)2] Expected loss

72



(x,y)~P
:EI'I'OI’ dECOmpOSitiOn h(x) : minimizes the expected loss

Etrue (fl) (x )) = IEx,y[(fD (x) — }’)2] Expected loss

= Exy [(fo(x) — h(x) + h(x) — y)?]
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(x,y)~P
:EI'I'OI’ decompOSitiOn h(x) : minimizes the expected loss

Etrue (fl) (x )) = IEx,y[(fD (x) — }’)2] Expected loss

= Exy [(fo(x) — h(x) + h(x) — y)?]

= Ey [(fl)(x) - h(x))2] + Exy[(h(x) = y)°]
+2E, [ (fo (x) — R(2))(R(x) — )]
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(x,y)~P
:EI'I'OI’ decompOSitiOn h(x) : minimizes the expected loss

Etrue (fl) (x )) = IEx,y[(fD (x) — }’)2] Expected loss

= Exy [(fo(x) — h(x) + h(x) — y)?]

= Ey [(fl)(x) - h(x))2] + Exy[(h(x) = y)°]
+2{Ex,y[(fp(x) — h(x))(h(x) — y)])
Y
Ex | (fo(x) = h(2))Eye[(h(x) — )]
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(x,y)~P
:EI'I'OI’ decompOSitiOn h(x) : minimizes the expected loss

Etrue (fl) (x )) = IEx,y[(fD (x) — }’)2] Expected loss

= Exy [(fo(x) — h(x) + h(x) — y)?]

= E; [ (fo () = h(1))°| + Eqy [(h(2) — 3)?]
+2Ey[(fo () = h(0) (h(x) = )]
Y
Ex | (o (0) = h(x)Eyel (h(x) = )]
Y

0

76



(x,y)~P
:EI'I'OI’ dECOmpOSitiOn h(x) : minimizes the expected loss

Etrue(fl)(x )) = Ex,y[(fl)(x) — y)z]

= Ey, [(fp(x) — h(x) + h(x) — y)?]

= E, |(fo (@) —h(x))"| + ey [(h() — )7
+0 e

noise

* Noise shows the irreducible minimum value of the loss
function

77



Expectation of true error

Etrue(fl)(x )) — Ex,y[(fl)(x) — Y)Z]
= E, |[(fo (@) = ()| + noise

78



Expectation of true error

Etrue(fl)(x )) = Ex,y[(fl)(x) — y)z]
= E, |[(fr(x) - h(x))2] + noise

En |E. [ (£>) — h(0)’]
= E, [Eﬂ (o) = h<x>)2”

We now want to focus on [E; [(fz) (x) — h(x))z].

79



The average hypothesis

f(x) = Eplfp(x)]

K
_ 1
O ~% ) fpu@®
k=1

K training sets (of size N) sampled from
P(x,y): DM, D@ . D&

80



Using the average hypothesis
Ep |(fo(x) = h(2))’|
=B [(fo00) = FG) + F) = k@) |
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Using the average hypothesis
Ep |(fo(x) = h(2))’|
=B [(fo00) = FG) + F) = k@) |

=E, (fD(x) —-fx ))2 t (f(x) - h(x))z

+2(fol0) - F00) () - )
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Using the average hypothesis
Ep |(fo(x) = h(2))’|
=B [(fo00) = FG) + F) = k@) |

=E, (fD(x) —-fx ))2 t (f(x) - h(x))z

+2(fo00) = ) (f) = h))

=E, [(fp(x) —-fx ))2] + (f(x) - h(x))z
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Bias and variance

B [(f>00) = k)] = o | (fo00) = 7G0)) | + (7o) = ho)
= ~ / - ~
var(x) bias(x)

E, [IED (o) - h(x))2” — E,[var(x) + bias(x) ]

= var + bias

84



